Suppr超能文献

利用定量结构-性质关系预测有机化合物的水溶性

Prediction of aqueous solubility of organic compounds using a quantitative structure-property relationship.

作者信息

Chen Xue-Qing, Cho Sung Jin, Li Yi, Venkatesh Srini

机构信息

Discovery Pharmaceutics, L12-09, Preclinical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Research Institute, Lawrenceville, New Jersey 08543, USA.

出版信息

J Pharm Sci. 2002 Aug;91(8):1838-52. doi: 10.1002/jps.10178.

Abstract

A quantitative structure-property relationship (QSPR) was developed for predicting the aqueous solubility of drug-like compounds from their chemical structures. A set of 321 structurally diverse drugs or related compounds, with their intrinsic aqueous solubility collected from literature, was used in this analysis. The data were divided into a training set (n = 267) for building the model and a randomly chosen testing set (n = 54) for assessing the predictive ability of the model. A series of molecular descriptors was calculated directly from chemical structures and a set of eight descriptors, including dipole moment, surface area, volume, molecular weight, number of rotatable bonds/total bonds, number of hydrogen-bond acceptors, number of hydrogen-bond donors and density, was chosen for the final model. The eight-descriptor model generated by multiple linear regression was further optimized by a genetic algorithm guided selection method. The model has a correlation coefficient (r) of 0.95 and a root-mean-square (rms) error of 0.56 log unit. It predicts the solubility of testing set compounds with a reasonable degree of accuracy (r = 0.84 and rms = 0.86 log unit). The present model can serve as a tool for medicinal chemists to guide their early synthetic efforts in arriving at appropriate analogs.

摘要

建立了一种定量结构-性质关系(QSPR),用于从药物类化合物的化学结构预测其水溶解度。本分析使用了一组321种结构多样的药物或相关化合物,其固有水溶解度从文献中收集。数据被分为用于构建模型的训练集(n = 267)和用于评估模型预测能力的随机选择的测试集(n = 54)。直接从化学结构计算出一系列分子描述符,并为最终模型选择了一组八个描述符,包括偶极矩、表面积、体积、分子量、可旋转键数/总键数、氢键受体数、氢键供体数和密度。通过遗传算法引导的选择方法进一步优化了由多元线性回归生成的八描述符模型。该模型的相关系数(r)为0.95,均方根(rms)误差为0.56对数单位。它以合理的准确度预测测试集化合物的溶解度(r = 0.84,rms = 0.86对数单位)。本模型可作为药物化学家的工具,指导他们早期的合成工作以获得合适的类似物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验