Suppr超能文献

生长温度对鼠疫耶尔森氏菌脂多糖中脂质A结构和活性的修饰作用

Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature.

作者信息

Kawahara Kazuyoshi, Tsukano Hiroko, Watanabe Haruo, Lindner Buko, Matsuura Motohiro

机构信息

Department of Bacteriology, The Kitasato Institute, Tokyo 108-8642, Japan.

出版信息

Infect Immun. 2002 Aug;70(8):4092-8. doi: 10.1128/IAI.70.8.4092-4098.2002.

Abstract

Yersinia pestis strain Yreka was grown at 27 or 37 degrees C, and the lipid A structures (lipid A-27 degrees C and lipid A-37 degrees C) of the respective lipopolysaccharides (LPS) were investigated by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Lipid A-27 degrees C consisted of a mixture of tri-acyl, tetra-acyl, penta-acyl, and hexa-acyl lipid A's, of which tetra-acyl lipid A was most abundant. Lipid A-37 degrees C consisted predominantly of tri- and tetra-acylated molecules, with only small amounts of penta-acyl lipid A; no hexa-acyl lipid A was detected. Furthermore, the amount of 4-amino-arabinose was substantially higher in lipid A-27 degrees C than in lipid A-37 degrees C. By use of mouse and human macrophage cell lines, the biological activities of the LPS and lipid A preparations were measured via their abilities to induce production of tumor necrosis factor alpha (TNF-alpha). In both cell lines the LPS and the lipid A from bacteria grown at 27 degrees C were stronger inducers of TNF-alpha than those from bacteria grown at 37 degrees C. However, the difference in activity was more prominent in human macrophage cells. These results suggest that in order to reduce the activation of human macrophages, it may be more advantageous for Y. pestis to produce less-acylated lipid A at 37 degrees C.

摘要

将鼠疫耶尔森菌菌株尤里卡分别在27℃或37℃下培养,通过基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱法研究了相应脂多糖(LPS)的脂质A结构(脂质A-27℃和脂质A-37℃)。脂质A-27℃由三酰基、四酰基、五酰基和六酰基脂质A的混合物组成,其中四酰基脂质A含量最高。脂质A-37℃主要由三酰化和四酰化分子组成,只有少量五酰基脂质A;未检测到六酰基脂质A。此外,脂质A-27℃中4-氨基阿拉伯糖的含量明显高于脂质A-37℃。利用小鼠和人巨噬细胞系,通过脂多糖和脂质A制剂诱导肿瘤坏死因子α(TNF-α)产生的能力来测定其生物活性。在两种细胞系中,27℃培养的细菌产生的脂多糖和脂质A比3​​7℃培养的细菌产生的脂多糖和脂质A更能诱导TNF-α。然而,这种活性差异在人巨噬细胞中更为明显。这些结果表明,为了减少人巨噬细胞的激活,鼠疫耶尔森菌在37℃下产生酰化程度较低的脂质A可能更有利。

相似文献

2
Variation in lipid A structure in the pathogenic yersiniae.
Mol Microbiol. 2004 Jun;52(5):1363-73. doi: 10.1111/j.1365-2958.2004.04059.x.
3
Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.
PLoS Pathog. 2012;8(10):e1002963. doi: 10.1371/journal.ppat.1002963. Epub 2012 Oct 11.
4
Characterization of the lipopolysaccharide of Yersinia pestis.
Microb Pathog. 2001 Feb;30(2):49-57. doi: 10.1006/mpat.2000.0411.
5
Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in .
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22984-22991. doi: 10.1073/pnas.1917504117. Epub 2020 Aug 31.
6
Structural diversity and endotoxic activity of the lipopolysaccharide of Yersinia pestis.
Biochemistry (Mosc). 2008 Feb;73(2):192-9. doi: 10.1134/s0006297908020119.
8
Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages.
Clin Vaccine Immunol. 2010 Jan;17(1):49-55. doi: 10.1128/CVI.00336-09. Epub 2009 Nov 4.

引用本文的文献

1
Gut microbiota-derived hexa-acylated lipopolysaccharides enhance cancer immunotherapy responses.
Nat Microbiol. 2025 Mar;10(3):795-807. doi: 10.1038/s41564-025-01930-y. Epub 2025 Feb 10.
2
Towards a Yersinia pestis lipid A recreated in an Escherichia coli scaffold genome.
Access Microbiol. 2024 Jul 17;6(7). doi: 10.1099/acmi.0.000723.v3. eCollection 2024.
4
Pathogenicity and virulence of .
Virulence. 2024 Dec;15(1):2316439. doi: 10.1080/21505594.2024.2316439. Epub 2024 Feb 22.
5
Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids.
Front Microbiol. 2023 Nov 10;14:1198786. doi: 10.3389/fmicb.2023.1198786. eCollection 2023.
6
and Plague: some knowns and unknowns.
Zoonoses. 2023;3(1). doi: 10.15212/zoonoses-2022-0040. Epub 2023 Jan 19.
7
Lipid A structural diversity among members of the genus .
Front Microbiol. 2023 May 25;14:1181034. doi: 10.3389/fmicb.2023.1181034. eCollection 2023.
8
Lipid A heterogeneity and its role in the host interactions with pathogenic and commensal bacteria.
Microlife. 2022 Jun 10;3:uqac011. doi: 10.1093/femsml/uqac011. eCollection 2022.

本文引用的文献

1
Isolation and Biological Characterization of Pasteurella pestis Endotoxin.
Infect Immun. 1970 Sep;2(3):229-36. doi: 10.1128/iai.2.3.229-236.1970.
2
Genome sequence of Yersinia pestis, the causative agent of plague.
Nature. 2001 Oct 4;413(6855):523-7. doi: 10.1038/35097083.
5
6
Characterization of the lipopolysaccharide of Yersinia pestis.
Microb Pathog. 2001 Feb;30(2):49-57. doi: 10.1006/mpat.2000.0411.
9
Novel variation of lipid A structures in strains of different Yersinia species.
FEBS Lett. 2000 Jan 7;465(1):87-92. doi: 10.1016/s0014-5793(99)01722-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验