Savolainen V, Chase M W, Hoot S B, Morton C M, Soltis D E, Bayer C, Fay M F, de Bruijn A Y, Sullivan S, Qiu Y L
Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
Syst Biol. 2000 Jun;49(2):306-62. doi: 10.1093/sysbio/49.2.306.
Following (1) the large-scale molecular phylogeny of seed plants based on plastid rbcL gene sequences (published in 1993 by Chase et al., Ann. Missouri Bot. Gard. 80:528-580) and (2) the 18S nuclear phylogeny of flowering plants (published in 1997 by Soltis et al., Ann. Missouri Bot. Gard. 84:1-49), we present a phylogenetic analysis of flowering plants based on a second plastid gene, atpB, analyzed separately and in combination with rbcL sequences for 357 taxa. Despite some discrepancies, the atpB-based phylogenetic trees were highly congruent with those derived from the analysis of rbcL and 18S rDNA, and the combination of atpB and rbcL DNA sequences (comprising approximately 3000 base pairs) produced increased bootstrap support for many major sets of taxa. The angiosperms are divided into two major groups: noneudicots with inaperturate or uniaperturate pollen (monocots plus Laurales, Magnoliales, Piperales, Ceratophyllales, and Amborellaceae-Nymphaeaceae-Illiciaceae) and the eudicots with triaperturate pollen (particularly asterids and rosids). Based on rbcL alone and atpB/rbcL combined, the noneudicots (excluding Ceratophyllum) are monophyletic, whereas in the atpB trees they form a grade. Ceratophyllum is sister to the rest of angiosperms with rbcL alone and in the combined atpB/rbcL analysis, whereas with atpB alone, Amborellaceae, Nymphaeaceae, and Illiciaceae/Schisandraceae form a grade at the base of the angiosperms. The phylogenetic information at each codon position and the different types of substitutions (observed transitions and transversions in the trees vs. pairwise comparisons) were examined; taking into account their respective consistency and retention indices, we demonstrate that third-codon positions and transitions are the most useful characters in these phylogenetic reconstructions. This study further demonstrates that phylogenetic analysis of large matrices is feasible.
继(1)基于质体rbcL基因序列的种子植物大规模分子系统发育研究(由蔡斯等人于1993年发表,《密苏里植物园园刊》80:528 - 580)以及(2)开花植物的18S核糖体RNA核系统发育研究(由索尔蒂斯等人于1997年发表,《密苏里植物园园刊》84:1 - 49)之后,我们基于第二个质体基因atpB进行了开花植物的系统发育分析,该分析对357个分类群分别进行,并与rbcL序列结合分析。尽管存在一些差异,但基于atpB构建的系统发育树与基于rbcL和18S核糖体DNA分析得出的树高度一致,并且atpB和rbcL DNA序列的组合(约3000个碱基对)为许多主要分类群提供了更高的自展支持率。被子植物分为两个主要类群:具有无萌发孔或单萌发孔花粉的非双子叶植物(单子叶植物加上樟目、木兰目、胡椒目、金鱼藻目以及无油樟科 - 睡莲科 - 八角科)和具有三萌发孔花粉的真双子叶植物(特别是菊类植物和蔷薇类植物)。仅基于rbcL以及atpB/rbcL组合分析时,非双子叶植物(不包括金鱼藻属)是单系的,而在基于atpB构建的树中它们形成一个演化支。仅基于rbcL以及在atpB/rbcL组合分析中,金鱼藻属是其他被子植物的姐妹群,而仅基于atpB分析时,无油樟科、睡莲科以及八角科/五味子科在被子植物基部形成一个演化支。我们研究了每个密码子位置的系统发育信息以及不同类型的替换(在树中观察到的转换和颠换与成对比较);考虑到它们各自的一致性和保留指数,我们证明第三密码子位置和转换是这些系统发育重建中最有用的特征。这项研究进一步证明了对大型矩阵进行系统发育分析是可行的。