Suppr超能文献

前馈和反馈在节律性运动控制中的相对作用。

The relative roles of feedforward and feedback in the control of rhythmic movements.

作者信息

Kuo Arthur D

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA.

出版信息

Motor Control. 2002 Apr;6(2):129-45. doi: 10.1123/mcj.6.2.129.

Abstract

A simple pendulum model is used to study how feedforward and feedback can be combined to control rhythmic limb movements. I show that a purely feedforward central pattern generator (CPG) is highly sensitive to unexpected disturbances. Pure feedback control analogous to reflex pathways can compensate for disturbances but is sensitive to imperfect sensors. I demonstrate that for systems subject to both unexpected disturbances and sensor noise, a combination of feedforward and feedback can improve performance. This combination is achieved by using a state estimation interpretation, in which a neural oscillator acts as an internal model of limb motion that predicts the state of the limb, and by using alpha-gamma coactivation or its equivalent to generate a sensory error signal that is fed back to entrain the neural oscillator. Such a hybrid feedforward/feedback system can optimally compensate for both disturbances and sensor noise, yet it can also produce fictive locomotion when sensory output is removed, as is observed biologically. CPG behavior arises due to the interaction of the internal model and a feedback control that uses the predicted state. I propose an interpretation of the neural oscillator as a filter for processing sensory information rather than as a generator of commands.

摘要

一个简单的摆锤模型被用于研究前馈和反馈如何结合以控制有节奏的肢体运动。我表明,一个纯粹的前馈中枢模式发生器(CPG)对意外干扰高度敏感。类似于反射通路的纯反馈控制可以补偿干扰,但对不完善的传感器敏感。我证明,对于既受到意外干扰又受到传感器噪声影响的系统,前馈和反馈的结合可以提高性能。这种结合是通过使用状态估计解释来实现的,其中神经振荡器充当肢体运动的内部模型以预测肢体状态,并通过使用α-γ共同激活或其等效方式来生成一个感觉误差信号,该信号被反馈以带动神经振荡器。这样一个混合前馈/反馈系统可以最佳地补偿干扰和传感器噪声,而且当去除感觉输出时它也能产生虚拟运动,就像在生物学中观察到的那样。CPG行为是由于内部模型和使用预测状态的反馈控制之间的相互作用而产生的。我提出将神经振荡器解释为用于处理感觉信息的滤波器,而不是命令发生器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验