Warner Holly, Audu Musa L, Labrozzi Gabrielle C, Makowski Nathaniel S, Triolo Ronald J
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
Motion Study Laboratory, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States.
Front Bioeng Biotechnol. 2025 Jul 30;13:1609734. doi: 10.3389/fbioe.2025.1609734. eCollection 2025.
Functional neuromuscular stimulation is a technique for restoring mobility impaired by spinal cord injury, including stepping. Typically, functional neuromuscular stimulation patterns are determined by manually tuning stimulation timing and charge applied to peripheral nerves by modulating constant current pulse amplitude, width, or frequency. Manual tuning is time consuming and suboptimal; we propose an alternative relying on optimal control for developing temporal patterns of stimulation that can be implemented in real-life functional neuromuscular stimulation systems. The functional neuromuscular stimulation system user model includes only those muscles available for activation with an existing functional neuromuscular stimulation system; optimal control goals and constraints emphasize simplicity to allow solutions to differ from neurotypical neuromuscular behavior. Reduction of stimulation levels and upper extremity effort during stepping are prioritized in the optimal control problem. A single study participant with incomplete spinal cord injury walked with both model-optimized and manually tuned functional neuromuscular stimulation patterns to determine the relative benefits of each. The optimized pattern reduced charge delivery by an average of 58% (35%-80% for eight of nine muscles) and improved the comfortability of left side muscle contractions. Relative to the manually tuned pattern, the model-optimized stimulation decreased upper extremity effort by 10.5% during left swing. Participant-informed modeling combined with optimal control could lead to efficient, personalized stimulation patterns.
功能性神经肌肉刺激是一种用于恢复因脊髓损伤而受损的运动能力(包括行走)的技术。通常,功能性神经肌肉刺激模式是通过手动调整刺激时间以及通过调制恒流脉冲幅度、宽度或频率来施加到周围神经的电荷量来确定的。手动调整既耗时又不理想;我们提出了一种替代方法,即依靠最优控制来开发可在实际功能性神经肌肉刺激系统中实现的刺激时间模式。功能性神经肌肉刺激系统用户模型仅包括那些可通过现有功能性神经肌肉刺激系统激活的肌肉;最优控制目标和约束强调简单性,以使解决方案不同于典型神经肌肉行为。在最优控制问题中,优先考虑在行走过程中降低刺激水平和上肢用力。一名不完全性脊髓损伤的研究参与者分别采用模型优化和手动调整的功能性神经肌肉刺激模式行走,以确定每种模式的相对益处。优化后的模式平均减少了58%的电荷量输送(九块肌肉中的八块减少了35%-80%),并提高了左侧肌肉收缩的舒适度。相对于手动调整的模式,模型优化的刺激在左侧摆动期间使上肢用力减少了10.5%。结合最优控制的参与者信息建模可能会产生高效、个性化的刺激模式。