Suppr超能文献

噬菌体蛋白质组树:一种基于基因组的噬菌体分类法。

The Phage Proteomic Tree: a genome-based taxonomy for phage.

作者信息

Rohwer Forest, Edwards Rob

机构信息

Department of Biology, San Diego State University, San Diego, California 92182-4614, USA.

出版信息

J Bacteriol. 2002 Aug;184(16):4529-35. doi: 10.1128/JB.184.16.4529-4535.2002.

Abstract

There are approximately 10(31) phage in the biosphere, making them the most abundant biological entities on the planet. Despite their great numbers and ubiquitous presence, very little is known about phage biodiversity, biogeography, or phylogeny. Information is limited, in part, because the current ICTV taxonomical system is based on culturing phage and measuring physical parameters of the free virion. No sequence-based taxonomic systems have previously been established for phage. We present here the "Phage Proteomic Tree," which is based on the overall similarity of 105 completely sequenced phage genomes. The Phage Proteomic Tree places phage relative to both their near neighbors and all other phage included in the analysis. This method groups phage into taxa that predicts several aspects of phage biology and highlights genetic markers that can be used for monitoring phage biodiversity. We propose that the Phage Proteomic Tree be used as the basis of a genome-based taxonomical system for phage.

摘要

生物圈中大约有10³¹个噬菌体,这使它们成为地球上数量最多的生物实体。尽管它们数量众多且无处不在,但人们对噬菌体的生物多样性、生物地理学或系统发育却知之甚少。信息有限,部分原因是当前国际病毒分类委员会(ICTV)的分类系统是基于培养噬菌体并测量游离病毒体的物理参数。以前尚未为噬菌体建立基于序列的分类系统。我们在此展示“噬菌体蛋白质组树”,它基于105个完全测序的噬菌体基因组的整体相似性。噬菌体蛋白质组树将噬菌体相对于其近邻以及分析中包含的所有其他噬菌体进行定位。这种方法将噬菌体分组为分类单元,这些分类单元可预测噬菌体生物学的几个方面,并突出可用于监测噬菌体生物多样性的遗传标记。我们建议将噬菌体蛋白质组树用作基于基因组的噬菌体分类系统的基础。

相似文献

1
The Phage Proteomic Tree: a genome-based taxonomy for phage.
J Bacteriol. 2002 Aug;184(16):4529-35. doi: 10.1128/JB.184.16.4529-4535.2002.
2
Integration of genomic and proteomic analyses in the classification of the Siphoviridae family.
Virology. 2015 Mar;477:144-154. doi: 10.1016/j.virol.2014.10.016. Epub 2014 Nov 14.
3
Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1.
ISME J. 2011 Jan;5(1):107-21. doi: 10.1038/ismej.2010.94. Epub 2010 Jul 8.
4
Reticulate representation of evolutionary and functional relationships between phage genomes.
Mol Biol Evol. 2008 Apr;25(4):762-77. doi: 10.1093/molbev/msn023. Epub 2008 Jan 29.
5
Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages.
Extremophiles. 2018 Nov;22(6):827-837. doi: 10.1007/s00792-018-1052-5. Epub 2018 Aug 18.
6
Analysis of the phage sequence space: the benefit of structured information.
Virology. 2007 Sep 1;365(2):241-9. doi: 10.1016/j.virol.2007.03.047. Epub 2007 May 7.
7
Phage diversity, genomics and phylogeny.
Nat Rev Microbiol. 2020 Mar;18(3):125-138. doi: 10.1038/s41579-019-0311-5. Epub 2020 Feb 3.
8
Decoding huge phage diversity: a taxonomic classification of Lak megaphages.
J Gen Virol. 2024 May;105(5). doi: 10.1099/jgv.0.001997.
9
Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37.
J Virol. 2012 Dec;86(23):12625-42. doi: 10.1128/JVI.01783-12. Epub 2012 Sep 12.
10
Current insights into phage biodiversity and biogeography.
Curr Opin Microbiol. 2009 Oct;12(5):582-7. doi: 10.1016/j.mib.2009.08.008. Epub 2009 Oct 5.

引用本文的文献

1
Bacteriophage Therapy: Discovery, Development, and FDA Approval Pathways.
Pharmaceuticals (Basel). 2025 Jul 26;18(8):1115. doi: 10.3390/ph18081115.
4
Two novel phages infecting isolated from the epipelagic ocean.
Front Microbiol. 2025 Jun 10;16:1592355. doi: 10.3389/fmicb.2025.1592355. eCollection 2025.
5
Implications of gut microbiota-mediated epigenetic modifications in intestinal diseases.
Gut Microbes. 2025 Dec;17(1):2508426. doi: 10.1080/19490976.2025.2508426. Epub 2025 Jun 4.
6
Isolation and Genomic Analysis of Phage AUBRB02: Implications for Phage Therapy in Lebanon.
Antibiotics (Basel). 2025 Apr 30;14(5):458. doi: 10.3390/antibiotics14050458.
7
Towards a unifying phylogenomic framework for tailed phages.
PLoS Genet. 2025 Feb 5;21(2):e1011595. doi: 10.1371/journal.pgen.1011595. eCollection 2025 Feb.
9
Modern microbiology: Embracing complexity through integration across scales.
Cell. 2024 Sep 19;187(19):5151-5170. doi: 10.1016/j.cell.2024.08.028.
10
Tools and methodology to phage discovery in freshwater environments.
Front Microbiol. 2024 May 31;15:1390726. doi: 10.3389/fmicb.2024.1390726. eCollection 2024.

本文引用的文献

1
Further Investigations on the Nature of Ultra-Microscopic Viruses and their Cultivation.
J Hyg (Lond). 1936 Jun;36(2):204-35. doi: 10.1017/s0022172400043606.
3
A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11411-6. doi: 10.1073/pnas.191174498. Epub 2001 Sep 11.
4
Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages.
J Mol Biol. 2001 Aug 24;311(4):657-79. doi: 10.1006/jmbi.2001.4868.
6
Frequency of morphological phage descriptions in the year 2000. Brief review.
Arch Virol. 2001;146(5):843-57. doi: 10.1007/s007050170120.
7
Complete nucleotide sequence of the mycoplasma virus P1 genome.
Plasmid. 2001 Mar;45(2):122-6. doi: 10.1006/plas.2000.1501.
10
Determination of virus abundance in marine sediments.
Appl Environ Microbiol. 2001 Mar;67(3):1384-7. doi: 10.1128/AEM.67.3.1384-1387.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验