Contreras Ana Maria, Hiasa Yoichi, He Wenping, Terella Adam, Schmidt Emmett V, Chung Raymond T
Gastrointestinal Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA.
J Virol. 2002 Sep;76(17):8505-17. doi: 10.1128/jvi.76.17.8505-8517.2002.
High rates of genetic variation ensure the survival of RNA viruses. Although this variation is thought to result from error-prone replication, RNA viruses must also maintain highly conserved genomic segments. A balance between conserved and variable viral elements is especially important in order for viruses to avoid "error catastrophe." Ribavirin has been shown to induce error catastrophe in other RNA viruses. We therefore used a novel hepatitis C virus (HCV) replication system to determine relative mutation frequencies in variable and conserved regions of the HCV genome, and we further evaluated these frequencies in response to ribavirin. We sequenced the 5' untranslated region (5' UTR) and the core, E2 HVR-1, NS5A, and NS5B regions of replicating HCV RNA isolated from cells transfected with a T7 polymerase-driven full-length HCV cDNA plasmid containing a cis-acting hepatitis delta virus ribozyme to control 3' cleavage. We found quasispecies in the E2 HVR-1 and NS5B regions of untreated replicating viral RNAs but not in conserved 5' UTR, core, or NS5A regions, demonstrating that important cis elements regulate mutation rates within specific viral segments. Neither T7-driven replication nor sequencing artifacts produced these nucleotide substitutions in control experiments. Ribavirin broadly increased error generation, especially in otherwise invariant regions, indicating that it acts as an HCV RNA mutagen in vivo. Similar results were obtained in hepatocyte-derived cell lines. These results demonstrate the potential utility of our system for the study of intrinsic factors regulating genetic variation in HCV. Our results further suggest that ribavirin acts clinically by promoting nonviable HCV RNA mutation rates. Finally, the latter result suggests that our replication model may be useful for identifying agents capable of driving replicating virus into error catastrophe.
高遗传变异率确保了RNA病毒的生存。尽管这种变异被认为是由易出错的复制导致的,但RNA病毒也必须维持高度保守的基因组片段。为了使病毒避免“错误灾难”,保守和可变的病毒元件之间的平衡尤为重要。利巴韦林已被证明能在其他RNA病毒中诱导错误灾难。因此,我们使用一种新型丙型肝炎病毒(HCV)复制系统来确定HCV基因组可变区和保守区的相对突变频率,并进一步评估这些频率对利巴韦林的反应。我们对从转染了含有顺式作用丁型肝炎病毒核酶以控制3'切割的T7聚合酶驱动的全长HCV cDNA质粒的细胞中分离出的复制性HCV RNA的5'非翻译区(5'UTR)、核心区、E2高变区-1、NS5A和NS5B区进行了测序。我们在未处理的复制性病毒RNA的E2高变区-1和NS5B区发现了准种,但在保守的5'UTR、核心区或NS5A区未发现,这表明重要的顺式元件调节特定病毒片段内的突变率。在对照实验中,T7驱动的复制和测序假象均未产生这些核苷酸替换。利巴韦林广泛增加了错误产生,尤其是在原本不变的区域,表明它在体内作为HCV RNA诱变剂起作用。在肝细胞衍生的细胞系中也获得了类似结果。这些结果证明了我们的系统在研究调节HCV遗传变异的内在因素方面的潜在用途。我们的结果进一步表明,利巴韦林在临床上通过提高无活力的HCV RNA突变率起作用。最后,后一结果表明我们的复制模型可能有助于识别能够使复制病毒陷入错误灾难的药物。