Suppr超能文献

基于 MREIT 的单次电流注入的低频电导率重建。

Low frequency conductivity reconstruction based on a single current injection via MREIT.

机构信息

School of Mathematics and Statistics, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.

Center for Post-doctoral studies of Management Science and Engineering and also Institute of Data Science and Technology, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.

出版信息

Phys Med Biol. 2020 Nov 17;65(22):225016. doi: 10.1088/1361-6560/abbc4d.

Abstract

Conventional magnetic resonance electrical impedance tomography (MREIT) reconstruction methods require administration of two linearly independent currents via at least two electrode pairs. This requires long scanning times and inhibits coordination of MREIT measurements with electrical neuromodulation strategies. We sought to develop an isotropic conductivity reconstruction algorithm in MREIT based on a single current injection, both to decrease scanning time by a factor of two and enable MREIT measurements to be conveniently adapted to general transcranial- or implanted-electrode neurostimulation protocols. In this work, we propose and demonstrate an iterative algorithm that extends previously published MREIT work using two-current administration approaches. The proposed algorithm is a single-current adaptation of the harmonic B algorithm. Forward modeling of electric potentials is used to capture changes of conductivity along current directions that would normally be invisible using data from a single-current administration. Computational and experimental results show that the reconstruction algorithm is capable of reconstructing isotropic conductivity images that agree well in terms of L error and structural similarity with exact conductivity distributions or two-current-based MREIT reconstructions. We conclude that it is possible to reconstruct high quality electrical conductivity images using MREIT techniques and one current injection only.

摘要

传统的磁共振电阻抗断层成像(MREIT)重建方法需要通过至少两对电极施加两个线性无关的电流。这需要较长的扫描时间,并抑制了 MREIT 测量与电神经调节策略的协调。我们试图开发一种基于单电流注入的各向同性电导率重建算法,以将扫描时间缩短一半,并使 MREIT 测量方便地适应一般的颅外或植入电极神经刺激方案。在这项工作中,我们提出并证明了一种迭代算法,该算法扩展了先前使用双电流给药方法的 MREIT 工作。所提出的算法是双电流给药的谐波 B 算法的单电流自适应。使用电流方向上的电势能正向建模来捕获电导率的变化,这些变化通常使用单电流给药的数据是不可见的。计算和实验结果表明,重建算法能够重建各向同性电导率图像,这些图像在 L 误差和结构相似性方面与精确电导率分布或双电流 MREIT 重建非常吻合。我们得出结论,仅使用 MREIT 技术和一次电流注入即可重建高质量的电导率图像。

相似文献

1
Low frequency conductivity reconstruction based on a single current injection via MREIT.
Phys Med Biol. 2020 Nov 17;65(22):225016. doi: 10.1088/1361-6560/abbc4d.
2
MREIT experiments with 200 µA injected currents: a feasibility study using two reconstruction algorithms, SMM and harmonic B(Z).
Phys Med Biol. 2012 Jul 7;57(13):4245-61. doi: 10.1088/0031-9155/57/13/4245. Epub 2012 Jun 8.
3
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2505-2514. doi: 10.1109/TBME.2017.2732502.
5
Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.
Magn Reson Med. 2018 Jan;79(1):71-82. doi: 10.1002/mrm.26638. Epub 2017 Feb 16.
6
Image reconstruction of anisotropic conductivity tensor distribution in MREIT: computer simulation study.
Phys Med Biol. 2004 Sep 21;49(18):4371-82. doi: 10.1088/0031-9155/49/18/012.
7
Non-iterative conductivity reconstruction algorithm using projected current density in MREIT.
Phys Med Biol. 2008 Dec 7;53(23):6947-61. doi: 10.1088/0031-9155/53/23/019. Epub 2008 Nov 12.
8
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.
Phys Med Biol. 2007 Dec 21;52(24):7229-42. doi: 10.1088/0031-9155/52/24/003. Epub 2007 Nov 23.
9
Low-frequency conductivity tensor imaging with a single current injection using DT-MREIT.
Phys Med Biol. 2021 Feb 20;66(5):055011. doi: 10.1088/1361-6560/abddcf.
10
Regional absolute conductivity reconstruction using projected current density in MREIT.
Phys Med Biol. 2012 Sep 21;57(18):5841-59. doi: 10.1088/0031-9155/57/18/5841. Epub 2012 Sep 5.

引用本文的文献

本文引用的文献

1
Development and testing of implanted carbon electrodes for electromagnetic field mapping during neuromodulation.
Magn Reson Med. 2020 Oct;84(4):2103-2116. doi: 10.1002/mrm.28273. Epub 2020 Apr 16.
2
Opening a new window on MR-based Electrical Properties Tomography with deep learning.
Sci Rep. 2019 Jun 20;9(1):8895. doi: 10.1038/s41598-019-45382-x.
4
Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT.
Phys Med Biol. 2018 Feb 13;63(4):045011. doi: 10.1088/1361-6560/aaa8d2.
5
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2505-2514. doi: 10.1109/TBME.2017.2732502.
6
Imaging of current flow in the human head during transcranial electrical therapy.
Brain Stimul. 2017 Jul-Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.
7
Extending the parameter range for tDCS: Safety and tolerability of 4 mA stimulation.
Brain Stimul. 2017 May-Jun;10(3):541-542. doi: 10.1016/j.brs.2017.03.002.
8
Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.
Magn Reson Med. 2018 Jan;79(1):71-82. doi: 10.1002/mrm.26638. Epub 2017 Feb 16.
9
A method for MREIT-based source imaging: simulation studies.
Phys Med Biol. 2016 Aug 7;61(15):5706-23. doi: 10.1088/0031-9155/61/15/5706. Epub 2016 Jul 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验