Zyryanov Anton B, Shestakov Alexander S, Lahti Reijo, Baykov Alexander A
A.N. Belozersky Institute of Physico-Chemical Biology and School of Chemistry, Moscow State University, Moscow 119899, Russia.
Biochem J. 2002 Nov 1;367(Pt 3):901-6. doi: 10.1042/BJ20020880.
Family I soluble pyrophosphatases (PPases) exhibit appreciable ATPase activity in the presence of a number of transition metal ions, but not the physiological cofactor Mg(2+). The results of the present study reveal a strong correlation between the catalytic efficiency of three family I PPases (from Saccharomyces cerevisiae, Escherichia coli and rat liver) and one family II PPase (from Streptococcus mutans ) in ATP and tripolyphosphate (P(3)) hydrolysis in the presence of Mg(2+), Mn(2+), Zn(2+) and Co(2+) on the one hand, and the phosphate-binding affinity of the enzyme subsite P2 that interacts with the electrophilic terminal phosphate group of ATP on the other. A similar correlation was observed in S. cerevisiae PPase variants with modified P1 and P2 subsites. The effect of the above metal ion cofactors on ATP binding to S. cerevisiae PPase paralleled their effect on phosphate binding, resulting in a low affinity of Mg-PPase to ATP. We conclude that PPase mainly binds ATP and P(3) through the terminal phosphate group that is attacked by water. Moreover, this interaction is critical in creating a reactive geometry at the P2 site with these bulky substrates, which do not otherwise fit the active site perfectly. We propose further that ATP is not hydrolysed by Mg-PPase, since its interaction with the terminal phosphate is not adequately strong for proper positioning of the nucleophile-electrophile pair.
I 型可溶性焦磷酸酶(PPases)在多种过渡金属离子存在的情况下表现出明显的ATP酶活性,但在生理辅因子Mg(2+)存在时则不然。本研究结果揭示了三种I型PPases(来自酿酒酵母、大肠杆菌和大鼠肝脏)和一种II型PPase(来自变形链球菌)在Mg(2+)、Mn(2+)、Zn(2+)和Co(2+)存在时对ATP和三聚磷酸(P(3))水解的催化效率,与酶亚位点P2与ATP亲电末端磷酸基团相互作用的磷酸盐结合亲和力之间存在很强的相关性。在具有修饰的P1和P2亚位点的酿酒酵母PPase变体中也观察到了类似的相关性。上述金属离子辅因子对ATP与酿酒酵母PPase结合的影响与其对磷酸盐结合的影响平行,导致Mg-PPase对ATP的亲和力较低。我们得出结论,PPase主要通过被水攻击的末端磷酸基团结合ATP和P(3)。此外,这种相互作用对于在P2位点与这些庞大的底物形成反应性几何结构至关重要,否则这些底物无法完美地契合活性位点。我们进一步提出,Mg-PPase不会水解ATP,因为它与末端磷酸的相互作用不够强,无法使亲核-亲电对正确定位。