Suppr超能文献

大脑奖赏回路中动作电位爆发的意义。

The significance of action potential bursting in the brain reward circuit.

作者信息

Cooper Donald C

机构信息

Department of Neurobiology and Physiology, Institute for Neuroscience, Northwestern University, 2153 N Campus Drive, 60208-3520, Evanston, IL, USA.

出版信息

Neurochem Int. 2002 Nov;41(5):333-40. doi: 10.1016/s0197-0186(02)00068-2.

Abstract

The brain reward circuit consists of specialized cortical and subcortical structural components that code for various cognitive aspects of goal-directed behavior. These components include the prefrontal cortex (PFC), amygdala (AMY), nucleus accumbens (Nac), subiculum (SUB) of the hippocampal formation, and the dopamine (DA) neurons in the ventral tegmental area (VTA). Both serial and parallel processing in the different components of the circuit code the various aspects of reward-related behavior. Individual neurons within each component have developed specialized intrinsic membrane properties that have led them to be typically defined as either single spiking or high frequency burst-firing neurons. However, a strict definition based on the output mode may not be appropriate. Under the right conditions, neurons can switch between bursting and single-spiking modes, therefore providing a conditional output state. The preferred mode of each individual neuron depends on a combination of different plastic neuronal properties such as, dendritic architecture, neuromodulation, intracellular calcium (Ca(++)) buffering, excitatory and inhibitory synaptic strength, and the spatial distribution and density of voltage and ligand-gated channels. It is likely that, in vivo, most neurons in the circuit, despite variations in intrinsic membrane properties, are conditional output neurons equipped with the versatility of switching between output modes under appropriate conditions. Bursting mode may be used to boost the gain of neural signaling of important or novel events by enhancing transmitter release and enhancing dendritic depolarization, thereby increasing synaptic potentiation. Conversely, single spiking mode may be used to dampen neuronal signaling and may be associated with habituation to unimportant events. Mode switching may provide flexibility to the circuit allowing different sets of neurons to conditionally code for the various aspects of reward-related memory and behavior.

摘要

大脑奖赏回路由专门的皮质和皮质下结构组成,这些结构编码目标导向行为的各种认知方面。这些结构包括前额叶皮质(PFC)、杏仁核(AMY)、伏隔核(Nac)、海马结构的下托(SUB)以及腹侧被盖区(VTA)中的多巴胺(DA)神经元。回路中不同结构的串行和平行处理对奖赏相关行为的各个方面进行编码。每个结构内的单个神经元都具有特殊的内在膜特性,这使得它们通常被定义为单峰发放或高频爆发式发放神经元。然而,基于输出模式的严格定义可能并不合适。在合适的条件下,神经元可以在爆发式发放和单峰发放模式之间切换,从而提供一种条件输出状态。每个单个神经元的偏好模式取决于不同的可塑性神经元特性的组合,如树突结构、神经调节、细胞内钙(Ca(++))缓冲、兴奋性和抑制性突触强度以及电压门控通道和配体门控通道的空间分布和密度。在体内,回路中的大多数神经元可能尽管内在膜特性存在差异,但都是条件输出神经元,具备在适当条件下在输出模式之间切换的多功能性。爆发式发放模式可通过增强递质释放和增强树突去极化来提高重要或新事件的神经信号增益,从而增加突触增强。相反,单峰发放模式可用于抑制神经元信号,可能与对不重要事件的习惯化有关。模式切换可为回路提供灵活性,使不同组的神经元能够有条件地编码奖赏相关记忆和行为的各个方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验