Malik Ruchi, Johnston Daniel
Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
J Neurosci. 2017 Apr 5;37(14):3940-3955. doi: 10.1523/JNEUROSCI.2784-16.2017. Epub 2017 Mar 9.
Studies comparing neuronal activity at the dorsal and ventral poles of the hippocampus have shown that the scale of spatial information increases and the precision with which space is represented declines from the dorsal to ventral end. These dorsoventral differences in neuronal output and spatial representation could arise due to differences in computations performed by dorsal and ventral CA1 neurons. In this study, we tested this hypothesis by quantifying the differences in dendritic integration and synaptic plasticity between dorsal and ventral CA1 pyramidal neurons of rat hippocampus. Using a combination of somatic and dendritic patch-clamp recordings, we show that the threshold for LTP induction is higher in dorsal CA1 neurons and that a G-protein-coupled inward-rectifying potassium channel mediated regulation of dendritic plateau potentials and dendritic excitability underlies this gating. By contrast, similar regulation of LTP is absent in ventral CA1 neurons. Additionally, we show that generation of plateau potentials and LTP induction in dorsal CA1 neurons depends on the coincident activation of Schaffer collateral and temporoammonic inputs at the distal apical dendrites. The ventral CA1 dendrites, however, can generate plateau potentials in response to temporally dispersed excitatory inputs. Overall, our results highlight the dorsoventral differences in dendritic computation that could account for the dorsoventral differences in spatial representation. The dorsal and ventral parts of the hippocampus encode spatial information at very different scales. Whereas the place-specific firing fields are small and precise at the dorsal end of the hippocampus, neurons at the ventral end have comparatively larger place fields. Here, we show that the dorsal CA1 neurons have a higher threshold for LTP induction and require coincident timing of excitatory synaptic inputs for the generation of dendritic plateau potentials. By contrast, ventral CA1 neurons can integrate temporally dispersed inputs and have a lower threshold for LTP. Together, these dorsoventral differences in the threshold for LTP induction could account for the differences in scale of spatial representation at the dorsal and ventral ends of the hippocampus.
比较海马体背侧和腹侧两极神经元活动的研究表明,空间信息的规模从背侧到腹侧末端逐渐增加,而空间表征的精度则逐渐下降。神经元输出和空间表征的这些背腹差异可能是由于背侧和腹侧CA1神经元执行的计算差异所致。在本研究中,我们通过量化大鼠海马体背侧和腹侧CA1锥体神经元之间树突整合和突触可塑性的差异来检验这一假设。通过结合体细胞和树突膜片钳记录,我们发现背侧CA1神经元中LTP诱导的阈值更高,并且一种G蛋白偶联内向整流钾通道介导的树突平台电位和树突兴奋性调节是这种门控的基础。相比之下,腹侧CA1神经元中不存在对LTP的类似调节。此外,我们表明背侧CA1神经元中平台电位的产生和LTP诱导取决于远端顶树突上施affer侧支和颞叶-海马输入的同时激活。然而,腹侧CA1树突可以响应时间上分散的兴奋性输入产生平台电位。总体而言,我们的结果突出了树突计算中的背腹差异,这可能解释了空间表征中的背腹差异。海马体的背侧和腹侧部分以非常不同的尺度编码空间信息。海马体背侧末端的位置特异性放电场小而精确,而腹侧末端的神经元具有相对较大的位置场。在这里,我们表明背侧CA1神经元中LTP诱导的阈值更高,并且树突平台电位的产生需要兴奋性突触输入的同时定时。相比之下,腹侧CA1神经元可以整合时间上分散的输入,并且LTP的阈值较低。这些LTP诱导阈值的背腹差异共同可以解释海马体背侧和腹侧末端空间表征尺度的差异。