Inoue Katsuhisa, Zhuang Lina, Maddox Dennis M, Smith Sylvia B, Ganapathy Vadivel
Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA.
J Biol Chem. 2002 Oct 18;277(42):39469-76. doi: 10.1074/jbc.M207072200. Epub 2002 Aug 11.
Citrate plays a pivotal role not only in the generation of metabolic energy but also in the synthesis of fatty acids, isoprenoids, and cholesterol in mammalian cells. Plasma levels of citrate are the highest ( approximately 135 microm) among the intermediates of the tricarboxylic acid cycle. Here we report on the cloning and functional characterization of a plasma membrane transporter (NaCT for Na+ -coupled citrate transporter) from rat brain that mediates uphill cellular uptake of citrate coupled to an electrochemical Na+ gradient. NaCT consists of 572 amino acids and exhibits structural similarity to the members of the Na+-dicarboxylate cotransporter/Na+ -sulfate cotransporter (NaDC/NaSi) gene family including the recently identified Drosophila Indy. In rat, the expression of NaCT is restricted to liver, testis, and brain. When expressed heterologously in mammalian cells, rat NaCT mediates the transport of citrate with high affinity (Michaelis-Menten constant, approximately 20 microm) and with a Na+:citrate stoichiometry of 4:1. The transporter does interact with other dicarboxylates and tricarboxylates but with considerably lower affinity. In mouse brain, the expression of NaCT mRNA is evident in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. NaCT represents the first transporter to be identified in mammalian cells that shows preference for citrate over dicarboxylates. This transporter is likely to play an important role in the cellular utilization of citrate in blood for the synthesis of fatty acids and cholesterol (liver) and for the generation of energy (liver and brain). NaCT thus constitutes a potential therapeutic target for the control of body weight, cholesterol levels, and energy homeostasis.
柠檬酸不仅在代谢能量的产生中起关键作用,而且在哺乳动物细胞中脂肪酸、类异戊二烯和胆固醇的合成中也起关键作用。在三羧酸循环的中间产物中,血浆柠檬酸水平最高(约135微摩尔)。在此,我们报告了从大鼠脑中克隆和鉴定一种质膜转运体(Na⁺偶联柠檬酸转运体,简称NaCT),该转运体介导柠檬酸与电化学Na⁺梯度偶联的细胞上坡摄取。NaCT由572个氨基酸组成,与包括最近鉴定的果蝇Indy在内的Na⁺ - 二羧酸共转运体/Na⁺ - 硫酸盐共转运体(NaDC/NaSi)基因家族成员具有结构相似性。在大鼠中,NaCT的表达仅限于肝脏、睾丸和大脑。当在哺乳动物细胞中异源表达时,大鼠NaCT以高亲和力(米氏常数约为20微摩尔)介导柠檬酸的转运,Na⁺与柠檬酸的化学计量比为4:1。该转运体确实与其他二羧酸和三羧酸相互作用,但亲和力要低得多。在小鼠脑中,NaCT mRNA在大脑皮层、小脑、海马体和嗅球中表达明显。NaCT是在哺乳动物细胞中鉴定出的第一个对柠檬酸比对二羧酸更具偏好性的转运体。这种转运体可能在血液中柠檬酸用于脂肪酸和胆固醇合成(肝脏)以及能量产生(肝脏和大脑)的细胞利用中起重要作用。因此,NaCT构成了控制体重、胆固醇水平和能量稳态的潜在治疗靶点。