Beltran Adriana S
Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
Metabolites. 2024 Jan 24;14(2):84. doi: 10.3390/metabo14020084.
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
柠檬酸钠转运体(NaCT)SLC13A5的作用是多方面的,且取决于具体情况。虽然异常功能障碍会导致新生儿癫痫,但其治疗性抑制可预防代谢性疾病。值得注意的是,由于潜在人类生理学的复杂性,关于这些现象背后的细胞和分子机制的见解有限,现有动物模型难以充分体现。本综述探讨了旨在弥合这一知识差距的创新技术。首先,我概述了人类疾病背景下的变体以及观察到该转运体表达的特定细胞类型。接下来,我讨论了用于生成患者特异性诱导多能干细胞(iPSC)的当前技术及其固有的优点和局限性,随后总结了将iPSC分化为神经元、肝细胞和类器官的方法。最后,我探讨了这些细胞模型作为深入研究SLC13A5相关疾病复杂分子和细胞机制平台的相关性。
Metabolites. 2024-1-24
Metabolites. 2023-2-23
bioRxiv. 2024-5-23
J Mol Biol. 2024-11-15
Metabolites. 2021-10-15
Genes (Basel). 2024-10-18
Front Mol Neurosci. 2023-6-8