Suppr超能文献

溶液中柔性大分子运动的随机共振

Stochastic resonance for motion of flexible macromolecules in solution.

作者信息

Dikshtein Igor E, Kuznetsov Dmitri V, Schimansky-Geier Lutz

机构信息

Institute of Radioengineering and Electronics, Russian Academy of Sciences, Mokhovaya Strasse 11, 103907 Moscow, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 1):061101. doi: 10.1103/PhysRevE.65.061101. Epub 2002 Jun 10.

Abstract

We consider a dilute or semidilute polymer solution with localized attracting centers near a flat phase boundary and assume it driven by both stochastic and periodic forces. The attracting inhomogeneities restrict the free motion of macromolecules and play the role of fixed pinning centers. The flat boundary is modeled by a bistable potential whose minima attract the movable polymer segments between neighboring pinning points. We study the motion of these segments. The stochastic forces lead to stochastic oscillations of the polymer parts between the two potential wells near the phase boundary. Application of a small temporal periodic force can synchronize these oscillations and leads to the phenomenon of stochastic resonance for a nonvanishing noise intensity. As an outcome of our theory in agreement with numerical simulations, the resonance is stronger for wider and/or less deep potentials and observed at smaller values of the noise intensity. Additionally, we discuss under what conditions doubly stochastic resonance of the macromolecular motion occurs, that is, if bistability of the potential near the boundary originates in the action of multiplicative noise.

摘要

我们考虑一种稀溶液或半稀溶液聚合物,其在平坦相边界附近具有局部吸引中心,并假设它受到随机力和周期性力的驱动。吸引不均匀性限制了大分子的自由运动,并起到固定钉扎中心的作用。平坦边界由双稳态势建模,其最小值吸引相邻钉扎点之间的可移动聚合物链段。我们研究这些链段的运动。随机力导致聚合物部分在相边界附近的两个势阱之间发生随机振荡。施加一个小的时间周期性力可以使这些振荡同步,并导致在非零噪声强度下出现随机共振现象。作为我们与数值模拟一致的理论结果,对于更宽和/或更浅的势,共振更强,并且在较小的噪声强度值下观察到。此外,我们讨论了在什么条件下会发生大分子运动的双重随机共振,即边界附近势的双稳性是否源于乘性噪声的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验