Lom Barbara, Cogen Jeffrey, Sanchez Analiza Lontok, Vu Thuy, Cohen-Cory Susana
Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90095, USA.
J Neurosci. 2002 Sep 1;22(17):7639-49. doi: 10.1523/JNEUROSCI.22-17-07639.2002.
The dendritic and axonal arbors of developing retinal ganglion cells (RGCs) are exposed to two sources of BDNF: RGC dendrites are exposed to BDNF locally within the retina, and RGC axons are exposed to BDNF at the target, the optic tectum. Our previous studies demonstrated that increasing tectal BDNF levels promotes RGC axon terminal arborization, whereas increasing retinal BDNF levels inhibits RGC dendritic arborization. These results suggested that differential neurotrophic action at the axon versus dendrite might be responsible for the opposing effects of BDNF on RGC axonal versus dendritic arborization. To explore this possibility, we examined the effects of altering BDNF levels at the optic tectum on the elaboration of RGC dendritic arbors in the retina. Increasing tectal BDNF levels resulted in a significant increase in dendritic branching, whereas neutralizing endogenous tectal BDNF with function-blocking antibodies significantly decreased dendritic arbor complexity. Thus, RGC dendritic arbors react in opposing manners to retinal- versus tectal-derived BDNF. Alterations in retinal BDNF levels, however, did not affect axon terminal arborization. Thus, RGC dendritic arborization is controlled in a complementary manner by both local and target-derived sources of BDNF, whereas axon arborization is modulated solely by neurotrophic interactions at the target. Together, our results indicate that developing RGCs modulate dendritic arborization by integrating signals from discrete sources of BDNF in the eye and brain. Differential integration of spatially discrete neurotrophin signals within a single neuron may therefore finely tune afferent and efferent neuronal connectivity.
发育中的视网膜神经节细胞(RGCs)的树突和轴突分支暴露于两种脑源性神经营养因子(BDNF)来源:RGC树突在视网膜局部暴露于BDNF,而RGC轴突在靶标视顶盖暴露于BDNF。我们之前的研究表明,增加顶盖BDNF水平可促进RGC轴突终末分支,而增加视网膜BDNF水平则抑制RGC树突分支。这些结果表明,轴突与树突处不同的神经营养作用可能是BDNF对RGC轴突与树突分支产生相反作用的原因。为了探究这种可能性,我们研究了改变视顶盖BDNF水平对视网膜中RGC树突分支形成的影响。增加顶盖BDNF水平导致树突分支显著增加,而用功能阻断抗体中和内源性顶盖BDNF则显著降低树突分支复杂性。因此,RGC树突分支对视网膜源性和顶盖源性BDNF的反应方式相反。然而,视网膜BDNF水平的改变并不影响轴突终末分支。因此,RGC树突分支由局部和靶标来源的BDNF以互补方式控制,而轴突分支仅由靶标处的神经营养相互作用调节。总之,我们的结果表明,发育中的RGCs通过整合来自眼和脑中离散BDNF来源的信号来调节树突分支。因此,单个神经元内空间离散的神经营养因子信号的差异整合可能会精细调节传入和传出神经元连接。