Campbell Jamie I D, Gunter Raymond
Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatchewan, S7N 5A5, Saskatoon, Canada.
Cognition. 2002 Nov;86(1):71-96. doi: 10.1016/s0010-0277(02)00138-5.
A basic phenomenon of cognitive arithmetic is that problems composed of a repeated operand, so-called "ties" (e.g. 6+6, 7 x 7), typically are solved more quickly and accurately than comparable non-tie problems (e.g. 6+5, 7 x 8). In Experiment 1, we present evidence that the tie effect is due to more efficient memory for ties than for non-ties, which participants reported solving more often using calculation strategies. The memory/strategy hypothesis accounts for differences in the tie effect as a function of culture (Asian Chinese vs. non-Asian Canadian university students), operation (addition, multiplication, subtraction, and division), and problem size (numerically small vs. large problems). Nonetheless, Blankenberger (Cognition 82 (2001) B15) eliminated the tie response time (RT) advantage by presenting problems in mixed formats (e.g. 4 x four), which suggests that the tie effect with homogenous formats (4 x 4 or four x four) is due to encoding. In Experiment 2, using simple multiplication problems, we replicated elimination of the tie effect with mixed formats, but also demonstrated an interference effect for mixed-format ties that slowed RTs and increased errors relative to non-tie problems. Additionally, practicing non-tie problems in both orders (e.g. 3 x 4 and 4 x 3) each time ties were tested once (cf. Cognition 82 (2001) B15) reduced the tie effect. The format-mismatch effect on ties, combined with a reduced tie advantage because of extra practice of non-ties, eliminated the tie effect. Rather than an encoding advantage, the results indicate that memory access for ties was better than for non-ties.
认知算术的一个基本现象是,由重复操作数组成的问题,即所谓的“相同数组合”(例如6+6、7×7),通常比类似的非相同数组合问题(例如6+5、7×8)解决得更快且更准确。在实验1中,我们提供的证据表明,相同数组合效应是由于对相同数组合的记忆比对非相同数组合的记忆更有效,参与者报告称在解决相同数组合问题时更多地使用计算策略。记忆/策略假说解释了相同数组合效应因文化(华裔亚洲人与非华裔加拿大大学生)、运算(加法、乘法、减法和除法)以及问题大小(数值小的问题与数值大的问题)而产生的差异。尽管如此,布兰肯伯格(《认知》82卷(2001年)B15)通过以混合格式呈现问题(例如4×four)消除了相同数组合的反应时间(RT)优势,这表明同质格式(4×4或four×four)的相同数组合效应是由于编码。在实验2中,我们使用简单乘法问题,复制了混合格式下相同数组合效应的消除,但也证明了混合格式相同数组合存在干扰效应,相对于非相同数组合问题,这会减慢反应时间并增加错误。此外,每次测试相同数组合问题时,对非相同数组合问题按两种顺序进行练习(例如3×4和4×3)(参见《认知》82卷(2001年)B15)会降低相同数组合效应。相同数组合的格式不匹配效应,加上由于对非相同数组合的额外练习而导致的相同数组合优势减弱,消除了相同数组合效应。结果表明,与编码优势不同,对相同数组合的内存访问比对非相同数组合的更好。