Suppr超能文献

类风湿关节炎的长期预后:一个基于基线参数的简单算法可预测12年随访时的影像学损伤、残疾及疾病进程。

Long-term outcome in rheumatoid arthritis: a simple algorithm of baseline parameters can predict radiographic damage, disability, and disease course at 12-year followup.

作者信息

Drossaers-Bakker K W, Zwinderman A H, Vliet Vlieland T P M, Van Zeben D, Vos K, Breedveld F C, Hazes J M W

机构信息

Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Arthritis Rheum. 2002 Aug;47(4):383-90. doi: 10.1002/art.10513.

Abstract

OBJECTIVES

To predict the long-term outcome of rheumatoid arthritis (RA) with respect to radiographic damage, disability, and disease course using baseline variables, and to construct decision trees identifying patients on an individual level at the extremes of the outcome spectrum of these 3 dimensions.

METHODS

The 12-year outcome of 112 female RA patients from a prospective inception cohort was assessed by measuring the tertiles of radiographic damage (measured by the modified Sharp/van der Heijde method, SHS), disability (measured by the Health Assessment Questionnaire, HAQ), and severe disease course as defined by patients with either the 33% highest cumulative disease activity (area under the curve of all observed disease activity scores) or the highest tertile of radiographic damage. Patients in the lowest (mild) and highest tertile (severe) of each outcome measure were identified. All baseline parameters known to be associated with each outcome (demographic and socioeconomic parameters; disease duration; disease activity measures; laboratory measures including rheumatoid factor, HLA typing, percentage agalactosyl IgG, functional and radiographic measures) were entered into cross-validated stepwise logistic regression models to find the best predictive combination of baseline parameters for each of the outcomes. Using the results of the logistic regression models, simple decision trees were constructed to categorize patients at an individual level in a particular prognostic group.

RESULTS

After 12 years, the lowest and highest tertiles were, respectively, 42.3 and 189 for the SHS and 0.37 and 1.25 for the HAQ. Fifty-five patients had a severe disease course. Mild and severe radiographic damage could be predicted with an accuracy of 90% and 85%, respectively. Mild and severe HAQ could be predicted with an accuracy of 90% and 84%, respectively, and severe disease course with an accuracy of 81%. The baseline variables found to be predictive of all 3 outcome measures were very similar and consisted of combinations of the following baseline parameters: swollen joint count (SJC), Ritchie score, rheumatoid factor (RF), the presence of erosions, and the HAQ score. Additional knowledge of the HLA typing hardly improved the accuracy of the prediction. To predict outcome at the individual level, simple decision trees were constructed using the RF, HAQ, SJC, and presence of erosions at baseline.

CONCLUSION

The present study shows that prediction of outcome in long-term RA is possible and can be done using widely available baseline parameters.

摘要

目的

利用基线变量预测类风湿关节炎(RA)在影像学损伤、残疾和疾病进程方面的长期预后,并构建决策树,在个体层面识别处于这三个维度预后谱两端的患者。

方法

通过测量影像学损伤(采用改良Sharp/van der Heijde方法,SHS)、残疾(采用健康评估问卷,HAQ)的三分位数以及由累积疾病活动度最高的33%患者(所有观察到的疾病活动评分曲线下面积)或影像学损伤最高三分位数定义的严重疾病进程,评估来自前瞻性起始队列的112例女性RA患者的12年预后。确定每个预后指标处于最低(轻度)和最高三分位数(重度)的患者。将所有已知与每个预后相关的基线参数(人口统计学和社会经济参数;疾病持续时间;疾病活动度指标;实验室指标,包括类风湿因子、HLA分型、无半乳糖基IgG百分比、功能和影像学指标)纳入交叉验证的逐步逻辑回归模型,以找到每个预后的基线参数的最佳预测组合。利用逻辑回归模型的结果,构建简单决策树,在个体层面将患者分类到特定的预后组。

结果

12年后,SHS的最低和最高三分位数分别为42.3和189,HAQ的最低和最高三分位数分别为0.37和1.25。55例患者有严重的疾病进程。轻度和重度影像学损伤的预测准确率分别为90%和85%。轻度和重度HAQ的预测准确率分别为90%和84%,严重疾病进程的预测准确率为81%。发现可预测所有三个预后指标的基线变量非常相似,由以下基线参数的组合组成:肿胀关节计数(SJC)、Ritchie评分、类风湿因子(RF)、侵蚀的存在以及HAQ评分。HLA分型的额外知识几乎没有提高预测的准确性。为了在个体层面预测预后,使用RF、HAQ、SJC以及基线时侵蚀的存在构建简单决策树。

结论

本研究表明,利用广泛可用的基线参数可以预测长期RA的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验