Suppr超能文献

生存时间与多个纵向变量联合分析中的最大似然估计

Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables.

作者信息

Lin Haiqun, McCulloch Charles E, Mayne Susan T

机构信息

Division of Biostatistics, Yale University School of Medicine, New Haven, CT 06520, USA.

出版信息

Stat Med. 2002 Aug 30;21(16):2369-82. doi: 10.1002/sim.1179.

Abstract

Joint modelling of longitudinal and survival data has received much attention in recent years. Most have concentrated on a single longitudinal variable. This paper considers joint modelling in the presence of multiple longitudinal variables. We explore direct association of time-to-event and multiple longitudinal processes through a frailty model and use a mixed effects model for each of the longitudinal variables. Correlations among the longitudinal variables are induced through correlated random effects. We allow effects of categorical and continuous covariates on both longitudinal and time-to-event responses and explore interactions between the longitudinal variables and other covariates on time-to-event. Estimates of the parameters are obtained by maximizing the joint likelihood for the longitudinal variable processes and the event process. We use a one-step-late EM algorithm to handle the direct dependence of the event process on the modelled longitudinal variables along with the presence of other fixed covariates in both processes. We argue that such a joint analysis with multiple longitudinal variables is advantageous to one with only a single longitudinal variable in revealing interplay among multiple longitudinal variables and the time-to-event.

摘要

纵向数据和生存数据的联合建模近年来受到了广泛关注。大多数研究都集中在单个纵向变量上。本文考虑在存在多个纵向变量的情况下进行联合建模。我们通过脆弱模型探索事件发生时间与多个纵向过程之间的直接关联,并对每个纵向变量使用混合效应模型。纵向变量之间的相关性通过相关随机效应来诱导。我们允许分类和连续协变量对纵向响应和事件发生时间响应都产生影响,并探索纵向变量与其他协变量对事件发生时间的相互作用。通过最大化纵向变量过程和事件过程的联合似然来获得参数估计。我们使用一步延迟期望最大化(EM)算法来处理事件过程对建模的纵向变量的直接依赖性,以及两个过程中其他固定协变量的存在。我们认为,这种对多个纵向变量的联合分析在揭示多个纵向变量与事件发生时间之间的相互作用方面比仅对单个纵向变量的分析更具优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验