Center for Neural Informatics, Structures, and Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.
Neuroscience. 2012 Mar 15;205:91-111. doi: 10.1016/j.neuroscience.2011.12.055. Epub 2012 Jan 4.
Integrating hippocampal anatomy from neuronal dendrites to whole system may help elucidate its relation to function. Toward this aim, we digitally traced the cytoarchitectonic boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. The 3D computational reconstruction identified all isotropic 16 μm voxels with appropriate subregions and layers (http://krasnow1.gmu.edu/cn3/hippocampus3d). Overall, DG, CA3, and CA1 occupied comparable volumes (15.3, 12.2, and 18.8 mm(3), respectively), but displayed substantial rostrocaudal volumetric gradients: CA1 made up more than half of the posterior hippocampus, whereas CA3 and DG were more prominent in the anterior regions. The CA3/CA1 ratio increased from ∼0.4 to ∼1 septo-temporally because of a specific change in stratum radiatum volume. Next we virtually embedded 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulating the dense packing of granular and pyramidal layers, and appropriately orienting the principal dendritic axes relative to local curvature. The resulting neuropil occupancy reproduced recent electron microscopy data measured in a restricted location. Extension of this analysis across each layer and subregion over the whole hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28, s.e.m. ∼0.05). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendrodendritic collision significantly correlated with expression of the membrane repulsion signal Down syndrome cell adhesion molecule (DSCAM). These heterogeneous stereological properties reflect and complement the non-uniform molecular composition, circuit connectivity, and computational function of the hippocampus across its transverse, longitudinal, and laminar organization.
整合从神经元树突到整个系统的海马解剖结构,可能有助于阐明其与功能的关系。为此,我们从成年大鼠大脑的薄冷冻切片的高分辨率图像中,对齿状回(DG)和 CA3/CA1 区域的细胞构筑边界进行了数字化追踪,这些边界沿着整个纵向延伸。三维计算重建确定了所有各向同性的 16 μm 体素及其适当的子区域和层(http://krasnow1.gmu.edu/cn3/hippocampus3d)。总体而言,DG、CA3 和 CA1 占据的体积相当(分别为 15.3、12.2 和 18.8mm3),但存在显著的头尾体积梯度:CA1 占据了后海马体的一半以上,而 CA3 和 DG 在头侧区域更为明显。CA3/CA1 比值从近 0.4 增加到近 1,这是由于放射状层体积的特定变化所致。接下来,我们从 244 个数字重建中随机抽取了 180 万个神经元形态,模拟了颗粒层和锥体细胞层的密集排列,并使主树突轴相对于局部曲率适当定向。由此产生的神经突占据率再现了在一个受限位置测量的最近的电子显微镜数据。将这种分析扩展到整个海马体的每个层和子区域,揭示了高度不均匀的树突密度。在 CA1 中,树突占据率在颞侧比在隔侧高 60%以上(0.46 比 0.28,s.e.m.约 0.05)。CA3 值在亚区(从 CA3b/CA3c 的 0.35 到 CA3a 的 0.50)和层(0.48、0.34 和 0.27 在始层、放射层和分子层)之间也有所不同。DG 的树突占据率明显较低,尤其是在上方的锥体细胞层(0.18)。树突与树突的碰撞概率与膜排斥信号唐氏综合征细胞黏附分子(DSCAM)的表达显著相关。这些不均匀的立体学特性反映并补充了海马体在其横向、纵向和层状组织中的非均匀分子组成、电路连接和计算功能。