Suppr超能文献

细菌视紫红质中的发色团平衡

Chromophore equilibria in bacteriorhodopsin.

作者信息

Fischer U, Oesterhelt D

出版信息

Biophys J. 1979 Nov;28(2):211-30. doi: 10.1016/S0006-3495(79)85172-3.

Abstract

An investigation of the dark equilibria between different chromophores of bacteriorhodopsin (BR) and studies of the kinetics of their interconversion and photochemical activity have led to the following conclusions. (a) A component of the 605-nm chromophore of BR decays in the millisecond range and is likely to be identical to the intermediate O of the photochemical cycle of BR and is assumed to be formed from the purple complex (PC) by the binding of one proton to BR. (b) An acidic form the PC, PCaL-, arises from the 605-nm chromophore by selective binding of anions L- (F- greater than Cl- greater than Br- greater than I- greater than Cl04-) to BR. (c) The isomeric equilibrium between 13-cis and all-trans retinal is approximately 0.15/0.85 in PCaCl-, 0.3/0.7 in the 605-nm chromophore as compared to 0.5/0.5 in the PC. (d) The 500-nm chromophore is formed from the PC by release of nearly one proton from BR. (e) The pH range in which the PC exists is reduced in a high-temperature structure of the purple membrane as compared to its low temperature structure. A model for the chromophore structure is proposed as a hypothesis, which allows a comprehensive interpretation of the results. In this model the absorption spectrum of the retinylidene lysine Schiff base is modulated by its protonation state and the interaction with an anionic group.

摘要

对细菌视紫红质(BR)不同发色团之间的暗平衡进行的研究以及对它们相互转化动力学和光化学活性的研究得出了以下结论。(a)BR的605纳米发色团的一个组分在毫秒范围内衰减,可能与BR光化学循环的中间体O相同,并假定是由紫色复合物(PC)通过一个质子与BR结合而形成的。(b)PC的一种酸性形式PCaL-,是由605纳米发色团通过阴离子L-(F->Cl->Br->I->ClO4-)选择性地与BR结合而产生的。(c)在PCaCl-中,13-顺式和全反式视黄醛之间的异构平衡约为0.15/0.85,在605纳米发色团中为0.3/0.7,而在PC中为0.5/0.5。(d)500纳米发色团是由PC通过BR释放近一个质子而形成的。(e)与紫色膜的低温结构相比,在紫色膜的高温结构中PC存在的pH范围减小。提出了一个发色团结构模型作为假设,它能够对结果进行全面的解释。在这个模型中,视黄叉赖氨酸席夫碱的吸收光谱受其质子化状态和与一个阴离子基团的相互作用的调节。

相似文献

1
Chromophore equilibria in bacteriorhodopsin.
Biophys J. 1979 Nov;28(2):211-30. doi: 10.1016/S0006-3495(79)85172-3.
2
Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin.
Biochemistry. 1990 Jul 24;29(29):6873-83. doi: 10.1021/bi00481a017.
3
6
A model system for bacteriorhodopsin chromophore.
Acta Biochim Biophys Acad Sci Hung. 1981;16(3-4):211-7.
7
Identification of retinal isomers isolated from bacteriorhodopsin.
Biochemistry. 1977 May 3;16(9):1955-9. doi: 10.1021/bi00628a031.
10
Photoisomerization of the chromophore in bacteriorhodopsin during the proton pumping photocycle.
Biochemistry. 1981 Apr 14;20(8):2302-6. doi: 10.1021/bi00511a036.

引用本文的文献

1
Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.
Biochemistry. 2014 Dec 9;53(48):7549-61. doi: 10.1021/bi501064n. Epub 2014 Nov 24.
5
Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.
Biochemistry. 2009 Nov 24;48(46):10948-55. doi: 10.1021/bi901552x.
6
Correlation between absorption maxima and thermal isomerization rates in bacteriorhodopsin.
Biophys J. 1991 Aug;60(2):440-6. doi: 10.1016/S0006-3495(91)82070-7.
7
Quantum efficiency of the photochemical cycle of bacteriorhodopsin.
Biophys J. 1990 Sep;58(3):597-608. doi: 10.1016/S0006-3495(90)82403-6.
8
Mechanism and role of divalent cation binding of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):731-9. doi: 10.1016/S0006-3495(86)83699-2.
9
The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases.
Biophys J. 1985 Mar;47(3):415-30. doi: 10.1016/S0006-3495(85)83933-3.
10
Combined kinetic and thermodynamic analysis of alpha-helical membrane protein unfolding.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18970-5. doi: 10.1073/pnas.0705067104. Epub 2007 Nov 19.

本文引用的文献

1
Anion-induced wavelength regulation of absorption maxima of Schiff bases of retinal.
Biochemistry. 1972 Feb 29;11(5):848-55. doi: 10.1021/bi00755a026.
2
Rhodopsin-like protein from the purple membrane of Halobacterium halobium.
Nat New Biol. 1971 Sep 29;233(39):149-52. doi: 10.1038/newbio233149a0.
4
Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium.
Eur J Biochem. 1973 Aug 17;37(2):316-26. doi: 10.1111/j.1432-1033.1973.tb02990.x.
5
The structure and spectra of the chromophore of the visual pigments.
Annu Rev Biophys Bioeng. 1974;3(0):151-77. doi: 10.1146/annurev.bb.03.060174.001055.
6
Functions of a new photoreceptor membrane.
Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853-7. doi: 10.1073/pnas.70.10.2853.
7
Light energy conversion in Halobacterium halobium.
J Supramol Struct. 1974;2(5-6):769-74. doi: 10.1002/jss.400020519.
8
Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium.
Biophys J. 1975 Sep;15(9):955-62. doi: 10.1016/S0006-3495(75)85875-9.
10
Phase transitions of the purple membranes of Halobacterium halobium.
Biochemistry. 1978 Mar 7;17(5):911-5. doi: 10.1021/bi00598a026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验