Balashov Sergei P, Imasheva Eleonora S, Dioumaev Andrei K, Wang Jennifer M, Jung Kwang-Hwan, Lanyi Janos K
Department of Physiology and Biophysics, University of California , Irvine, California 92697, United States.
Biochemistry. 2014 Dec 9;53(48):7549-61. doi: 10.1021/bi501064n. Epub 2014 Nov 24.
A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type.
一组与质子泵黄色视紫红质关系最为密切的微生物视网膜蛋白具有一种新的序列基序和新功能。正如对来自嗜盐嗜碱菌属的该类蛋白的一个代表(KR2)的报道,它们除了进行质子运输外,还能进行光驱动的钠离子运输。在本文中,我们研究了一种类似的蛋白,即来自湖沼嗜盐菌的GLR,它在大肠杆菌中表达,与KR2具有一些共同特性,但仅运输Na⁺。GLR的吸收光谱在Na⁺浓度≤3 M时对其不敏感。然而,极低浓度的Na⁺会导致光循环中间体的衰减和上升时间出现显著差异,这与在约60 μM Na⁺时从“不依赖Na⁺”的光循环(或光循环分支)转变为“依赖Na⁺”的光循环一致。后者而非前者的光循环步骤速率与Na⁺浓度呈线性相关。这表明在光激发后会短暂形成一个高亲和力的Na⁺结合位点,并且从本体进入该位点的Na⁺会改变循环其余部分的事件进程。在较低pH值下切换反应路径需要更高浓度的Na⁺。因此,数据表明H⁺和Na⁺之间存在竞争以决定这两种替代途径。在D251E突变体中该区域受到扰动时,Na⁺在无光激发的情况下也能结合,这一发现支持了在席夫碱抗衡离子处可以形成Na⁺结合位点的观点。Na⁺与突变体的结合会使发色团的最大吸收峰向红色移动,类似于野生型光循环中H⁺结合时的情况。