Suppr超能文献

菌紫质的二价阳离子结合的机制和作用。

Mechanism and role of divalent cation binding of bacteriorhodopsin.

出版信息

Biophys J. 1986 Mar;49(3):731-9. doi: 10.1016/S0006-3495(86)83699-2.

Abstract

Several observations have already suggested that the carboxyl groups are involved in the association of divalent cations with bacteriorhodopsin (Chang et al., 1985). Here we show that at least part of the protons released from deionized purple membrane (;blue membrane') samples when salt is added are from carboxyl groups. We find that the apparent pK of magnesium binding to purple membrane in the presence of 0.5 mM buffer is 5.85. We suggest this is the pK of the carboxyl groups shifted from their usual pK because of the proton concentrating effect of the large negative surface potential of the purple membrane. Divalent cations may interact with negatively charged sites on the surface of purple membrane through the surface potential and/or through binding either by individual ligands or by conformation-dependent chelation. We find that divalent cations can be released from purple membrane by raising the temperature. Moreover, purple membrane binds only about half as many divalent cations after bleaching. Neither of these operations is expected to decrease the surface potential and thus these experiments suggest that some specific conformation in purple membrane is essential for the binding of a substantial fraction of the divalent cations. Divalent cations in purple membrane can be replaced by monovalent, (Na(+) and K(+)), or trivalent, (La(+++)) cations. Flash photolysis measurements show that the amplitude of the photointermediate, O, is affected by the replacement of the divalent cations by other ions, especially by La(+++). The kinetics of the M photointermediate and light-induced H(+) uptake are not affected by Na(+) and K(+), but they are drastically lengthened by La(+++) substitution, especially at alkaline pHs. We suggest that the surface charge density and thus the surface potential is controlled by divalent cation binding. Removal of the cations (to make deionized blue membrane) or replacement of them (e.g. La(+++)-purple membrane) changes the surface potential and hence the proton concentration near the membrane surface. An increase in local proton concentration could cause the protonation of critical carboxyl groups, for example the counter-ion to the protonated Schiff's base, causing the red shift associated with the formation of both deionized and acid blue membrane. Similar explanations based on regulation of the surface proton concentration can explain many other effects associated with the association of different cations with bacteriorhodopsin.

摘要

已有几项观察结果表明,羧酸基团参与了二价阳离子与菌紫质的结合(Chang 等人,1985)。在这里,我们表明,当加入盐时,从去离子紫膜(“蓝膜”)样品中释放的至少部分质子来自羧酸基团。我们发现,在存在 0.5mM 缓冲液的情况下,镁与紫膜结合的表观 pK 值为 5.85。我们认为这是由于紫膜的大负表面电势的质子浓缩效应,从其通常的 pK 值移动的羧酸基团的 pK 值。二价阳离子可能通过表面电势与紫膜表面上的带负电荷的位点相互作用,或者通过单独的配体结合,或者通过构象依赖性螯合结合。我们发现通过升高温度可以从紫膜中释放二价阳离子。此外,漂白后紫膜仅结合约一半的二价阳离子。这些操作都不应降低表面电势,因此这些实验表明,紫膜中的某些特定构象对于结合相当一部分二价阳离子是必不可少的。紫膜中的二价阳离子可以被单价(Na(+) 和 K(+))或三价(La(+++))阳离子取代。闪光光解测量表明,光中间产物 O 的幅度受二价阳离子被其他离子取代的影响,尤其是受 La(+++)的影响。M 光中间产物的动力学和光诱导的 H(+)摄取不受 Na(+)和 K(+)的影响,但它们被 La(+++)取代大大延长,特别是在碱性 pH 值下。我们认为表面电荷密度,因此表面电势由二价阳离子结合控制。除去阳离子(制得去离子蓝膜)或用它们取代(例如,La(+++)-紫膜)会改变表面电势,从而改变膜表面附近的质子浓度。局部质子浓度的增加可能导致关键羧酸基团的质子化,例如质子化 Schiff 碱的反离子,导致与去离子和酸蓝膜形成相关的红移。基于表面质子浓度调节的类似解释可以解释与不同阳离子与菌紫质结合相关的许多其他影响。

相似文献

1
Mechanism and role of divalent cation binding of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):731-9. doi: 10.1016/S0006-3495(86)83699-2.
2
Cation binding by bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1985 Jan;82(2):396-400. doi: 10.1073/pnas.82.2.396.
4
Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):149-53. doi: 10.1073/pnas.88.1.149.
8
Regeneration and inhibition of proton pumping activity of bacteriorhodopsin blue membrane by cationic amine anesthetics.
Biochim Biophys Acta. 2005 May 15;1669(1):17-25. doi: 10.1016/j.bbamem.2005.02.002.
9
Effect of metal ion exchange on the photocurrent response from bacteriorhodopsin on tin oxide electrodes.
Bioelectrochemistry. 2002 Jul;57(1):17-22. doi: 10.1016/s1567-5394(01)00173-6.
10
Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment.
Biophys J. 1988 Aug;54(2):227-32. doi: 10.1016/S0006-3495(88)82951-5.

引用本文的文献

1
Brighter than the sun: Rajni Govindjee at 80 and her fifty years in photobiology.
Photosynth Res. 2015 Apr;124(1):1-5. doi: 10.1007/s11120-015-0106-0. Epub 2015 Mar 5.
2
Nature of the individual Ca binding sites in Ca-regenerated bacteriorhodopsin.
Biophys J. 1992 May;61(5):1201-6. doi: 10.1016/S0006-3495(92)81929-X.
3
Angle of the retinal of bacteriorhodopsin in blue membrane.
Biophys J. 1989 Aug;56(2):281-3. doi: 10.1016/S0006-3495(89)82674-8.
4
The pink membrane: the stable photoproduct of deionized purple membrane.
Biophys J. 1987 Oct;52(4):617-23. doi: 10.1016/S0006-3495(87)83252-6.
6
On the molecular mechanisms of the Schiff base deprotonation during the bacteriorhodopsin photocycle.
Proc Natl Acad Sci U S A. 1986 Nov;83(22):8580-4. doi: 10.1073/pnas.83.22.8580.
7
Two-photon absorption of bacteriorhodopsin: formation of a red-shifted thermally stable photoproduct F620.
Biophys J. 2005 Aug;89(2):1175-82. doi: 10.1529/biophysj.104.055806. Epub 2005 May 13.
8
9
Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):149-53. doi: 10.1073/pnas.88.1.149.

本文引用的文献

1
Cation binding by bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1985 Jan;82(2):396-400. doi: 10.1073/pnas.82.2.396.
2
Carbodiimides inhibit the acid-induced purple-to-blue transition of bacteriorhodopsin.
Biochim Biophys Acta. 1980 Oct 3;592(3):621-5. doi: 10.1016/0005-2728(80)90105-x.
3
4
The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium.
Biophys J. 1980 May;30(2):231-42. doi: 10.1016/S0006-3495(80)85091-0.
5
Absorption spectral properties of acetylated bacteriorhodopsin in purple membrane depending on pH.
Biochemistry. 1982 Aug 31;21(18):4479-83. doi: 10.1021/bi00261a044.
7
Calmodulin.
Adv Protein Chem. 1982;35:213-321. doi: 10.1016/s0065-3233(08)60470-2.
8
Surface charge of purple membranes measured by laser Doppler velocimetry.
Biochem Biophys Res Commun. 1984 Jul 18;122(1):252-8. doi: 10.1016/0006-291x(84)90467-4.
9
Surface potential on purple membranes and its sidedness studied by a resonance Raman dye probe.
Biophys J. 1984 Apr;45(4):663-70. doi: 10.1016/S0006-3495(84)84208-3.
10
Salt and pH-dependent changes of the purple membrane absorption spectrum.
Photochem Photobiol. 1984 Nov;40(5):641-6. doi: 10.1111/j.1751-1097.1984.tb05353.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验