Suppr超能文献

机械阻抗和低氧胁迫下玉米根中通气组织形成过程中的乙烯生物合成

Ethylene Biosynthesis during Aerenchyma Formation in Roots of Maize Subjected to Mechanical Impedance and Hypoxia.

作者信息

He Cj., Finlayson S. A., Drew M. C., Jordan W. R., Morgan P. W.

机构信息

Department of Horticultural Sciences (C.-j.H., M.C.D.) and Department of Soil and Crop Sciences (S.A.F., W.R.J., P.W.M.), Texas A&M University, College Station, Texas 77843.

出版信息

Plant Physiol. 1996 Dec;112(4):1679-1685. doi: 10.1104/pp.112.4.1679.

Abstract

Germinated maize (Zea mays L.) seedlings were enclosed in modified triaxial cells in an artificial substrate and exposed to oxygen deficiency stress (4% oxygen, hypoxia) or to mechanical resistance to elongation growth (mechanical impedance) achieved by external pressure on the artificial substrate, or to both hypoxia and impedance simultaneously. Compared with controls, seedlings that received either hypoxia or mechanical impedance exhibited increased rates of ethylene evolution, greater activities of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC oxidase, and cellulase, and more cell death and aerenchyma formation in the root cortex. Effects of hypoxia plus mechanical impedance were strongly synergistic on ethylene evolution and ACC synthase activity; cellulase activity, ACC oxidase activity, or aerenchyma formation did not exhibit this synergism. In addition, the lag between the onset of stress and increases in both ACC synthase activity and ethylene production was shortened by 2 to 3 h when mechanical impedance or impedance plus hypoxia was applied compared with hypoxia alone. The synergistic effects of hypoxia and mechanical impedance and the earlier responses to mechanical impedance than to hypoxia suggest that different mechanisms are involved in the promotive effects of these stresses on maize root ethylene biosynthesis.

摘要

将发芽的玉米(Zea mays L.)幼苗置于人工基质中的改良三轴细胞中,使其遭受缺氧胁迫(4%氧气,低氧),或通过对人工基质施加外部压力实现对伸长生长的机械阻力(机械阻抗),或同时遭受低氧和阻抗。与对照相比,遭受低氧或机械阻抗的幼苗乙烯释放速率增加,1-氨基环丙烷-1-羧酸(ACC)合酶、ACC氧化酶和纤维素酶的活性更高,根皮层中的细胞死亡和气腔形成更多。低氧加机械阻抗对乙烯释放和ACC合酶活性具有强烈的协同作用;纤维素酶活性、ACC氧化酶活性或气腔形成未表现出这种协同作用。此外,与单独低氧相比,施加机械阻抗或阻抗加低氧时,胁迫开始与ACC合酶活性和乙烯产生增加之间的延迟缩短了2至3小时。低氧和机械阻抗的协同作用以及对机械阻抗的反应早于对低氧的反应表明,这些胁迫对玉米根乙烯生物合成的促进作用涉及不同的机制。

相似文献

2
Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
Plant Cell Environ. 2016 Oct;39(10):2145-57. doi: 10.1111/pce.12766. Epub 2016 Aug 12.
9
Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia.
J Exp Bot. 2010 Mar;61(3):857-71. doi: 10.1093/jxb/erp362. Epub 2009 Dec 14.

引用本文的文献

1
The role of ethylene in the regulation of plant response mechanisms to waterlogging stress.
Plant Cell Rep. 2024 Nov 12;43(12):278. doi: 10.1007/s00299-024-03367-9.
3
Effects of Flooding and Endogenous Hormone on the Formation of Knee Roots in .
Front Plant Sci. 2022 Feb 3;13:803619. doi: 10.3389/fpls.2022.803619. eCollection 2022.
4
Soil penetration by maize roots is negatively related to ethylene-induced thickening.
Plant Cell Environ. 2022 Mar;45(3):789-804. doi: 10.1111/pce.14175. Epub 2021 Sep 7.
7
Soil compaction and the architectural plasticity of root systems.
J Exp Bot. 2019 Nov 18;70(21):6019-6034. doi: 10.1093/jxb/erz383.
8
Cell wall hydrolases act in concert during aerenchyma development in sugarcane roots.
Ann Bot. 2019 Nov 27;124(6):1067-1089. doi: 10.1093/aob/mcz099.
9
Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS.
Front Plant Sci. 2019 Jan 9;9:1928. doi: 10.3389/fpls.2018.01928. eCollection 2018.
10
Ethylene modulates root cortical senescence in barley.
Ann Bot. 2018 Jun 28;122(1):95-105. doi: 10.1093/aob/mcy059.

本文引用的文献

3
Does water deficit stress promote ethylene synthesis by intact plants?
Plant Physiol. 1990 Dec;94(4):1616-24. doi: 10.1104/pp.94.4.1616.
7
A mechanical strain-induced 1-aminocyclopropane-1-carboxylic acid synthase gene.
Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1595-8. doi: 10.1073/pnas.92.5.1595.
8
Characterization of a maize G-box binding factor that is induced by hypoxia.
Plant J. 1995 Apr;7(4):589-601. doi: 10.1046/j.1365-313x.1995.7040589.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验