Neuhaus John M
Department of Epidemiology and Biostatistics, University of California, San Francisco 94143-0560, USA.
Biometrics. 2002 Sep;58(3):675-83. doi: 10.1111/j.0006-341x.2002.00675.x.
Misclassified clustered and longitudinal data arise in studies where the response indicates a condition identified through an imperfect diagnostic procedure. Examples include longitudinal studies that use an imperfect diagnostic test to assess whether or not an individual has been infected with a specific virus. This article presents methods to implement both population-averaged and cluster-specific analyses of such data when the misclassification rates are known. The methods exploit the fact that the class of generalized linear models enjoys a closure property in the case of misclassified responses. Data from longitudinal studies of infectious disease will illustrate the findings.
在一些研究中会出现错误分类的聚类和纵向数据,其中的反应表明通过不完善的诊断程序识别出的一种状况。例如,纵向研究使用不完善的诊断测试来评估个体是否感染了特定病毒。本文介绍了在已知错误分类率的情况下,对这类数据进行总体平均分析和特定聚类分析的方法。这些方法利用了广义线性模型在错误分类反应情况下具有封闭性质这一事实。传染病纵向研究的数据将用来说明这些发现。