Paulino Carlos Daniel, Soares Paulo, Neuhaus John
Instituto Superior Técnico, e Centro de Matemática e Aplicações, Universidade Técnica de Lisboa, Portugal.
Biometrics. 2003 Sep;59(3):670-5. doi: 10.1111/1541-0420.00077.
Motivated by a study of human papillomavirus infection in women, we present a Bayesian binomial regression analysis in which the response is subject to an unconstrained misclassification process. Our iterative approach provides inferences for the parameters that describe the relationships of the covariates with the response and for the misclassification probabilities. Furthermore, our approach applies to any meaningful generalized linear model, making model selection possible. Finally, it is straightforward to extend it to multinomial settings.
受一项关于女性人乳头瘤病毒感染研究的启发,我们提出了一种贝叶斯二项回归分析方法,其中响应变量受到无约束的错误分类过程影响。我们的迭代方法为描述协变量与响应变量之间关系的参数以及错误分类概率提供了推断。此外,我们的方法适用于任何有意义的广义线性模型,从而使得模型选择成为可能。最后,将其扩展到多项分布情形也很简单。