Zhang Boan, Bilder Christopher R, Tebbs Joshua M
Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A.
Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.
Group testing, where individual specimens are composited into groups to test for the presence of a disease (or other binary characteristic), is a procedure commonly used to reduce the costs of screening a large number of individuals. Group testing data are unique in that only group responses may be available, but inferences are needed at the individual level. A further methodological challenge arises when individuals are tested in groups for multiple diseases simultaneously, because unobserved individual disease statuses are likely correlated. In this paper, we propose new regression techniques for multiple-disease group testing data. We develop an expectation-solution based algorithm that provides consistent parameter estimates and natural large-sample inference procedures. We apply our proposed methodology to chlamydia and gonorrhea screening data collected in Nebraska as part of the Infertility Prevention Project and to prenatal infectious disease screening data from Kenya.
分组检测是一种常用于降低对大量个体进行筛查成本的程序,在分组检测中,个体样本被合并成组以检测疾病(或其他二元特征)的存在情况。分组检测数据的独特之处在于可能仅能获得组的反应结果,但需要在个体层面进行推断。当个体同时针对多种疾病进行分组检测时,会出现另一个方法上的挑战,因为未观察到的个体疾病状态可能存在相关性。在本文中,我们针对多种疾病分组检测数据提出了新的回归技术。我们开发了一种基于期望求解的算法,该算法提供一致的参数估计和自然的大样本推断程序。我们将所提出的方法应用于内布拉斯加州作为预防不孕项目一部分收集的衣原体和淋病筛查数据,以及来自肯尼亚的产前传染病筛查数据。