Suppr超能文献

多病组检测数据的回归分析。

Regression analysis for multiple-disease group testing data.

作者信息

Zhang Boan, Bilder Christopher R, Tebbs Joshua M

机构信息

Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A.

出版信息

Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.

Abstract

Group testing, where individual specimens are composited into groups to test for the presence of a disease (or other binary characteristic), is a procedure commonly used to reduce the costs of screening a large number of individuals. Group testing data are unique in that only group responses may be available, but inferences are needed at the individual level. A further methodological challenge arises when individuals are tested in groups for multiple diseases simultaneously, because unobserved individual disease statuses are likely correlated. In this paper, we propose new regression techniques for multiple-disease group testing data. We develop an expectation-solution based algorithm that provides consistent parameter estimates and natural large-sample inference procedures. We apply our proposed methodology to chlamydia and gonorrhea screening data collected in Nebraska as part of the Infertility Prevention Project and to prenatal infectious disease screening data from Kenya.

摘要

分组检测是一种常用于降低对大量个体进行筛查成本的程序,在分组检测中,个体样本被合并成组以检测疾病(或其他二元特征)的存在情况。分组检测数据的独特之处在于可能仅能获得组的反应结果,但需要在个体层面进行推断。当个体同时针对多种疾病进行分组检测时,会出现另一个方法上的挑战,因为未观察到的个体疾病状态可能存在相关性。在本文中,我们针对多种疾病分组检测数据提出了新的回归技术。我们开发了一种基于期望求解的算法,该算法提供一致的参数估计和自然的大样本推断程序。我们将所提出的方法应用于内布拉斯加州作为预防不孕项目一部分收集的衣原体和淋病筛查数据,以及来自肯尼亚的产前传染病筛查数据。

相似文献

1
Regression analysis for multiple-disease group testing data.
Stat Med. 2013 Dec 10;32(28):4954-66. doi: 10.1002/sim.5858. Epub 2013 May 23.
2
Global goodness-of-fit tests for group testing regression models.
Stat Med. 2009 Oct 15;28(23):2912-28. doi: 10.1002/sim.3678.
3
4
Informative Dorfman screening.
Biometrics. 2012 Mar;68(1):287-96. doi: 10.1111/j.1541-0420.2011.01644.x. Epub 2011 Jul 15.
5
Group testing regression models with fixed and random effects.
Biometrics. 2009 Dec;65(4):1270-8. doi: 10.1111/j.1541-0420.2008.01183.x.
6
Estimating the prevalence of multiple diseases from two-stage hierarchical pooling.
Stat Med. 2016 Sep 20;35(21):3851-64. doi: 10.1002/sim.6964. Epub 2016 Apr 18.
7
Two-dimensional informative array testing.
Biometrics. 2012 Sep;68(3):793-804. doi: 10.1111/j.1541-0420.2011.01726.x. Epub 2011 Dec 29.
8
Regression analysis and variable selection for two-stage multiple-infection group testing data.
Stat Med. 2019 Oct 15;38(23):4519-4533. doi: 10.1002/sim.8311. Epub 2019 Jul 11.
9
Syphilis Testing among Men Who Have Had Rectal Gonorrhea and Chlamydia Tests, United States.
J Epidemiol Glob Health. 2019 Sep;9(3):153-157. doi: 10.2991/jegh.k.190620.001.

引用本文的文献

1
A mixed-effects Bayesian regression model for multivariate group testing data.
Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf028.
2
Regression analysis and variable selection for two-stage multiple-infection group testing data.
Stat Med. 2019 Oct 15;38(23):4519-4533. doi: 10.1002/sim.8311. Epub 2019 Jul 11.
3
Positing, fitting, and selecting regression models for pooled biomarker data.
Stat Med. 2015 Jul 30;34(17):2544-58. doi: 10.1002/sim.6496. Epub 2015 Apr 6.

本文引用的文献

1
Pooling nasopharyngeal/throat swab specimens to increase testing capacity for influenza viruses by PCR.
J Clin Microbiol. 2012 Mar;50(3):891-6. doi: 10.1128/JCM.05631-11. Epub 2012 Jan 11.
3
Pooling designs for outcomes under a Gaussian random effects model.
Biometrics. 2012 Mar;68(1):45-52. doi: 10.1111/j.1541-0420.2011.01673.x. Epub 2011 Oct 9.
4
binGroup: A Package for Group Testing.
R J. 2010 Dec 1;2(2):56-60.
6
Informative Retesting.
J Am Stat Assoc. 2010 Sep 1;105(491):942-955. doi: 10.1198/jasa.2010.ap09231.
7
Bias, efficiency, and agreement for group-testing regression models.
J Stat Comput Simul. 2009 Jan 1;79(1):67-80. doi: 10.1080/00949650701608990.
8
Group testing regression models with fixed and random effects.
Biometrics. 2009 Dec;65(4):1270-8. doi: 10.1111/j.1541-0420.2008.01183.x.
9
Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response.
Biometrics. 2009 Jun;65(2):361-8. doi: 10.1111/j.1541-0420.2008.01103.x.
10
An optimal DNA pooling strategy for progressive fine mapping.
Genetica. 2009 Apr;135(3):267-81. doi: 10.1007/s10709-008-9275-5. Epub 2008 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验