Brown R. H., Byrd G. T.
Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602-7272.
Plant Physiol. 1993 Dec;103(4):1183-1188. doi: 10.1104/pp.103.4.1183.
Low conductance to CO2 of bundle sheath cells is required in C4 photosynthesis to maintain high [CO2] at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Elevated [CO2] allows high CO2 assimilation rates by this enzyme and prevents Rubisco oxygenase activity and O2 inhibition of carboxylation. Bundle sheath conductance to CO2 was estimated by chemically inhibiting phosphoenolpyruvate carboxylase and calculating the slope of the linear response of leaf CO2 uptake to [CO2]. The inhibitor 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate was supplied to detached leaves of Panicum maximum, Panicum miliaceum, and Sorghum bicolor at 4 mM. Uptake of CO2 was measured at 210 mL L-1 O2 over the CO2 concentration range of 0.34 to 28 mL L-1. Without the inhibitor, CO2 uptake increased steeply at low [CO2] and saturated at about 1 mL L-1. After inhibition, CO2 uptake was a linear function of [CO2] over much of the range tested. The slope of this CO2 response, taken as bundle sheath conductance, was 2.35, 1.96, and 1.13 mmol m-2 s-1 for P. maximum, P. miliaceum, and S. bicolor, respectively, on a leaf area basis. Conductance based on bundle sheath area was 0.76, 0.93, and 0.54 mmol m-2 s-1, respectively. Uptake of CO2 by leaves of P. maximum supplied with the inhibitor was not affected by reduction of [O2] from 210 to 20 mL L-1 over the range of [CO2] used. Because [CO2] in bundle sheath cells of inhibited leaves is likely to be much lower than ambient, the lack of O2 sensitivity of CO2 uptake cannot be ascribed to lack of O2 reaction with ribulose bisphosphate and is probably due to the low conductance of bundle sheath cells, especially at low ambient [CO2]. The likely result of reducing [O2] from 210 to 20 mL L-1 is to stimulate carboxylation of ribulose bisphosphate, thus further reducing [CO2] in bundle sheath cells and increasing CO2 diffusion to these cells from the mesophyll. However, the increase in diffusion is greatly limited by low conductance of the bundle sheath cell walls. Calculations based on estimated bundle sheath conductance show that changes in bundle sheath [CO2] of 0.085 to 0.5 mL L-1, which might be associated with reduced [O2], would have a negligible effect on CO2 uptake.
C4光合作用中,维管束鞘细胞对二氧化碳的低导度是维持核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)位点高二氧化碳浓度所必需的。高二氧化碳浓度能使该酶实现高二氧化碳同化速率,并防止Rubisco加氧酶活性以及氧气对羧化作用的抑制。通过化学抑制磷酸烯醇式丙酮酸羧化酶并计算叶片二氧化碳吸收对二氧化碳浓度的线性响应斜率,来估算维管束鞘对二氧化碳的导度。将抑制剂3,3-二氯-2-二羟基膦酰基甲基-2-丙烯酸酯以4 mM的浓度供应给大黍、黍稷和高粱的离体叶片。在210 mL L-1氧气条件下,在0.34至28 mL L-1的二氧化碳浓度范围内测量二氧化碳吸收情况。在没有抑制剂的情况下,低二氧化碳浓度时二氧化碳吸收急剧增加,并在约1 mL L-1时达到饱和。抑制后,在测试的大部分浓度范围内,二氧化碳吸收是二氧化碳浓度的线性函数。以叶面积为基础,大黍、黍稷和高粱的这种二氧化碳响应斜率(即维管束鞘导度)分别为2.35、1.96和1.13 mmol m-2 s-1。基于维管束鞘面积的导度分别为0.76、0.93和0.54 mmol m-2 s-1。在所用的二氧化碳浓度范围内,向供应抑制剂的大黍叶片提供的氧气浓度从210 mL L-1降至20 mL L-1时,二氧化碳吸收不受影响。由于受抑制叶片的维管束鞘细胞中的二氧化碳浓度可能远低于环境浓度,二氧化碳吸收对氧气不敏感不能归因于氧气与核酮糖二磷酸缺乏反应,可能是由于维管束鞘细胞的低导度,尤其是在低环境二氧化碳浓度时。将氧气浓度从210 mL L-1降至20 mL L-1的可能结果是刺激核酮糖二磷酸的羧化作用,从而进一步降低维管束鞘细胞中的二氧化碳浓度,并增加二氧化碳从叶肉向这些细胞的扩散。然而,扩散的增加受到维管束鞘细胞壁低导度的极大限制。基于估算的维管束鞘导度的计算表明,维管束鞘中二氧化碳浓度0.085至0.5 mL L-1的变化(这可能与氧气浓度降低有关)对二氧化碳吸收的影响可忽略不计。