Suppr超能文献

通过拟合密集的 A/C 曲线来估算 C 光合作用参数。

Estimating C photosynthesis parameters by fitting intensive A/C curves.

机构信息

Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA.

出版信息

Photosynth Res. 2019 Aug;141(2):181-194. doi: 10.1007/s11120-019-00619-8. Epub 2019 Feb 13.

Abstract

Measurements of photosynthetic assimilation rate as a function of intercellular CO (A/C curves) are widely used to estimate photosynthetic parameters for C species, yet few parameters have been reported for C plants, because of a lack of estimation methods. Here, we extend the framework of widely used estimation methods for C plants to build estimation tools by exclusively fitting intensive A/C curves (6-8 more sampling points) for C using three versions of photosynthesis models with different assumptions about carbonic anhydrase processes and ATP distribution. We use simulation analysis, out of sample tests, existing in vitro measurements and chlorophyll-fluorescence measurements to validate the new estimation methods. Of the five/six photosynthetic parameters obtained, sensitivity analyses show that maximal-Rubisco-carboxylation-rate, electron-transport-rate, maximal-PEP-carboxylation-rate, and carbonic-anhydrase were robust to variation in the input parameters, while day respiration and mesophyll conductance varied. Our method provides a way to estimate carbonic anhydrase activity, a new parameter, from A/C curves, yet also shows that models that do not explicitly consider carbonic anhydrase yield approximate results. The two photosynthesis models, differing in whether ATP could freely transport between RuBP and PEP regeneration processes yielded consistent results under high light, but they may diverge under low light intensities. Modeling results show selection for Rubisco of low specificity and high catalytic rate, low leakage of bundle sheath, and high PEPC affinity, which may further increase C efficiency.

摘要

作为细胞间 CO(A/C 曲线)函数的光合作用同化率的测量被广泛用于估计 C 物种的光合作用参数,但由于缺乏估计方法,很少有参数被报道用于 C 植物。在这里,我们扩展了广泛用于 C 植物的估计方法的框架,通过仅拟合 intensive A/C 曲线(6-8 个更多的采样点),使用三种不同的光合作用模型来构建估计工具,这些模型对碳酸酐酶过程和 ATP 分布有不同的假设。我们使用模拟分析、样本外测试、现有的体外测量和叶绿素荧光测量来验证新的估计方法。在获得的五个/六个光合作用参数中,敏感性分析表明,最大 RuBP 羧化酶羧化速率、电子传递速率、最大 PEP 羧化速率和碳酸酐酶对输入参数的变化具有鲁棒性,而白天呼吸和质膜导度则发生了变化。我们的方法提供了一种从 A/C 曲线估计碳酸酐酶活性的方法,这是一个新的参数,但也表明不明确考虑碳酸酐酶的模型会产生近似的结果。这两个光合作用模型,在 ATP 是否可以在 RuBP 和 PEP 再生过程之间自由运输方面存在差异,在高光下产生一致的结果,但在低光强度下可能会出现分歧。模型结果表明,Rubisco 具有低特异性和高催化速率、鞘细胞泄漏低和 PEPC 亲和力高的选择,这可能进一步提高 C 效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验