Rivoal J., Hanson A. D.
Institut de Recherche en Biologie Vegetale de l'Universite de Montreal, 4101 Rue Sherbrooke Est, Montreal, Quebec, H1X 2B2, Canada.
Plant Physiol. 1994 Nov;106(3):1179-1185. doi: 10.1104/pp.106.3.1179.
Roots of all plants examined so far have the potential for both ethanol and lactate fermentation. A short burst of lactate fermentation usually occurs when plant tissues are transferred from normoxic to anoxic conditions. According to the Davies-Roberts hypothesis, the consequent pH drop both initiates ethanol fermentation and blocks further production of lactate by inhibiting lactate dehydrogenase (LDH). However, the role of LDH in this pH control mechanism is still a matter of debate. To perturb the control system in a defined way, a barley LDH cDNA under the control of the cauliflower mosaic virus 35S promoter was introduced into tomato (Lycopersicon esculentum Mill. cv VFMT) using Agrobacterium rhizogenes. The transgenic root clones expressed up to 50 times the LDH activity of controls. The fermentative metabolism of these clones was compared using roots grown previously in normoxic conditions or roots given a 3-d hypoxic pretreatment. During the transition from normoxia to anoxia, lactate accumulation was no faster and no more extensive in transgenic roots than in controls. Similarly, during prolonged anoxia the flux of 14C from [U-14C] glucose to lactate and ethanol was not modified by the expression of the transgene. However, in both transgenic and control roots, hypoxic pretreatment increased the flux to lactate and promoted lactate export to the medium. These results show that LDH has a very low flux control coefficient for lactate fermentation, consistent with the Davies-Roberts hypothesis. Moreover, they suggest that lactate secretion exerts major control over long-term lactate glycolysis in vivo.
迄今为止所检测的所有植物的根都具备进行乙醇发酵和乳酸发酵的潜力。当植物组织从常氧条件转移至缺氧条件时,通常会短暂爆发乳酸发酵。根据戴维斯 - 罗伯茨假说,随之而来的pH值下降既启动了乙醇发酵,又通过抑制乳酸脱氢酶(LDH)来阻止乳酸的进一步生成。然而,LDH在这种pH值控制机制中的作用仍存在争议。为了以特定方式干扰控制系统,利用发根农杆菌将受花椰菜花叶病毒35S启动子控制的大麦LDH cDNA导入番茄(Lycopersicon esculentum Mill. cv VFMT)。转基因根克隆表达的LDH活性比对照高50倍。使用先前在常氧条件下生长的根或经过3天低氧预处理的根,对这些克隆的发酵代谢进行了比较。在从常氧转变为缺氧的过程中,转基因根中乳酸的积累速度和程度并不比对照更快或更广泛。同样,在长时间缺氧期间,[U - 14C]葡萄糖中14C向乳酸和乙醇的通量并未因转基因的表达而改变。然而,在转基因根和对照根中,低氧预处理均增加了向乳酸的通量,并促进了乳酸向培养基的输出。这些结果表明,LDH对乳酸发酵的通量控制系数非常低,这与戴维斯 - 罗伯茨假说一致。此外,它们表明乳酸分泌在体内对长期乳酸糖酵解起主要控制作用。