PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy.
Int J Mol Sci. 2013 Feb 27;14(3):4734-61. doi: 10.3390/ijms14034734.
Low oxygen stress often occurs during the life of green organisms, mostly due to the environmental conditions affecting oxygen availability. Both plants and algae respond to low oxygen by resetting their metabolism. The shift from mitochondrial respiration to fermentation is the hallmark of anaerobic metabolism in most organisms. This involves a modified carbohydrate metabolism coupled with glycolysis and fermentation. For a coordinated response to low oxygen, plants exploit various molecular mechanisms to sense when oxygen is either absent or in limited amounts. In Arabidopsis thaliana, a direct oxygen sensing system has recently been discovered, where a conserved N-terminal motif on some ethylene responsive factors (ERFs), targets the fate of the protein under normoxia/hypoxia. In Oryza sativa, this same group of ERFs drives physiological and anatomical modifications that vary in relation to the genotype studied. The microalga Chlamydomonas reinhardtii responses to low oxygen seem to have evolved independently of higher plants, posing questions on how the fermentative metabolism is modulated. In this review, we summarize the most recent findings related to these topics, highlighting promising developments for the future.
低氧胁迫在绿色生物的生命过程中经常发生,主要是由于环境条件影响氧气的可用性。植物和藻类都会通过重新调整新陈代谢来应对低氧。从线粒体呼吸到发酵的转变是大多数生物厌氧代谢的标志。这涉及到与糖酵解和发酵偶联的碳水化合物代谢的改变。为了对低氧做出协调的反应,植物利用各种分子机制来感知氧气是否缺失或数量有限。在拟南芥中,最近发现了一个直接的氧气感应系统,其中一些乙烯响应因子(ERFs)上保守的 N 端基序靶向蛋白在正常氧/缺氧条件下的命运。在水稻中,同一组 ERFs 驱动与所研究的基因型相关的生理和解剖学改变。微藻莱茵衣藻对低氧的反应似乎与高等植物独立进化,这就提出了如何调节发酵代谢的问题。在这篇综述中,我们总结了与这些主题相关的最新发现,强调了未来有希望的发展方向。