Elliott Sean J, McElhaney Anne E, Feng Changjian, Enemark John H, Armstrong Fraser A
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR England, UK.
J Am Chem Soc. 2002 Oct 2;124(39):11612-3. doi: 10.1021/ja027776f.
Protein film voltammetry of chicken liver sulfite oxidase (SO) bound at the pyrolytic graphite "edge" or modified gold electrodes shows that catalytic electron transport is controlled by the inherent electrochemical characteristics of the heme b domain and conformational changes that allow intramolecular electron transfer with the molybdenum active site. In the absence of sulfite, a single nonturnover electrochemical signal is observed at +90 mV (vs SHE) that is assigned to heme b. In the presence of sulfite, this signal transforms into a catalytic wave at similar potential. The shape and negligible pH dependence of this wave indicate that catalytic turnover is controlled by the one-electron transfers through heme b. The smaller turnover numbers obtained in this experiment (k(cat) approximately 2-4 s(-1), as compared to 100 s(-1) in solution) suggest that only a small fraction of SO is bound at the electrode in a manner that permits the conformational change necessary for fast interdomain electron transfer.
结合在热解石墨“边缘”或修饰金电极上的鸡肝亚硫酸盐氧化酶(SO)的蛋白质膜伏安法表明,催化电子传递受血红素b结构域的固有电化学特性以及允许与钼活性位点进行分子内电子转移的构象变化控制。在没有亚硫酸盐的情况下,在+90 mV(相对于标准氢电极)处观察到一个单一的非周转电化学信号,该信号归因于血红素b。在有亚硫酸盐的情况下,该信号在相似电位下转变为催化波。该波的形状和可忽略的pH依赖性表明催化周转受通过血红素b的单电子转移控制。在该实验中获得的较小周转数(k(cat)约为2 - 4 s(-1),而溶液中为100 s(-1))表明,只有一小部分SO以允许快速域间电子转移所需构象变化的方式结合在电极上。