Suppr超能文献

细胞色素促进酶的直接电子转移

Direct Electron Transfer of Enzymes Facilitated by Cytochromes.

作者信息

Ma Su, Ludwig Roland

机构信息

Biocatalysis and Biosensing Laboratory Department of Food Science and Technology BOKU - University of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria.

出版信息

ChemElectroChem. 2019 Feb 15;6(4):958-975. doi: 10.1002/celc.201801256. Epub 2018 Dec 13.

Abstract

The direct electron transfer (DET) of enzymes has been utilized to develop biosensors and enzymatic biofuel cells on micro- and nanostructured electrodes. Whereas some enzymes exhibit direct electron transfer between their active-site cofactor and an electrode, other oxidoreductases depend on acquired cytochrome domains or cytochrome subunits as built-in redox mediators. The physiological function of these cytochromes is to transfer electrons between the active-site cofactor and a redox partner protein. The exchange of the natural electron acceptor/donor by an electrode has been demonstrated for several cytochrome carrying oxidoreductases. These multi-cofactor enzymes have been applied in third generation biosensors to detect glucose, lactate, and other analytes. This review investigates and classifies oxidoreductases with a cytochrome domain, enzyme complexes with a cytochrome subunit, and covers designed cytochrome fusion enzymes. The structurally and electrochemically best characterized proponents from each enzyme class carrying a cytochrome, that is, flavoenzymes, quinoenzymes, molybdenum-cofactor enzymes, iron-sulfur cluster enzymes, and multi-haem enzymes, are featured, and their biochemical, kinetic, and electrochemical properties are compared. The cytochromes molecular and functional properties as well as their contribution to the interdomain electron transfer (IET, between active-site and cytochrome) and DET (between cytochrome and electrode) with regard to the achieved current density is discussed. Protein design strategies for cytochrome-fused enzymes are reviewed and the limiting factors as well as strategies to overcome them are outlined.

摘要

酶的直接电子转移(DET)已被用于在微纳结构电极上开发生物传感器和酶生物燃料电池。虽然一些酶在其活性位点辅因子和电极之间表现出直接电子转移,但其他氧化还原酶则依赖于获得的细胞色素结构域或细胞色素亚基作为内置的氧化还原介质。这些细胞色素的生理功能是在活性位点辅因子和氧化还原伴侣蛋白之间转移电子。对于几种携带细胞色素的氧化还原酶,已证明电极可替代天然电子受体/供体。这些多辅因子酶已应用于第三代生物传感器中,用于检测葡萄糖、乳酸和其他分析物。本综述对具有细胞色素结构域的氧化还原酶、具有细胞色素亚基的酶复合物进行了研究和分类,并涵盖了设计的细胞色素融合酶。重点介绍了每类携带细胞色素的酶中结构和电化学特征最佳的代表,即黄素酶、醌酶、钼辅因子酶、铁硫簇酶和多血红素酶,并比较了它们的生化、动力学和电化学性质。讨论了细胞色素的分子和功能特性,以及它们在实现的电流密度方面对域间电子转移(IET,活性位点和细胞色素之间)和直接电子转移(DET,细胞色素和电极之间)的贡献。综述了细胞色素融合酶的蛋白质设计策略,并概述了限制因素以及克服这些因素的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d661/6472588/30218cb11727/CELC-6-958-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验