Suppr超能文献

寒海中的海藻:进化与碳获取

Seaweeds in cold seas: evolution and carbon acquisition.

作者信息

Raven John A, Johnston Andrew M, Kübler Janet E, Korb Rebecca, McInroy Shona G, Handley Linda L, Scrimgeour Charlie M, Walker Diana I, Beardall John, Clayton Margaret N, Vanderklift Mathew, Fredriksen Stein, Dunton Kenneth H

机构信息

Division of Environmental and Applied Biology, School of Life Sciences, University of Dundee, Biological Sciences Institute, Dundee DD1 4HN, UK.

出版信息

Ann Bot. 2002 Oct;90(4):525-36. doi: 10.1093/aob/mcf171.

Abstract

Much evidence suggests that life originated in hydrothermal habitats, and for much of the time since the origin of cyanobacteria (at least 2.5 Ga ago) and of eukaryotic algae (at least 2.1 Ga ago) the average sea surface and land surface temperatures were higher than they are today. However, there have been at least four significant glacial episodes prior to the Pleistocene glaciations. Two of these (approx. 2.1 and 0.7 Ga ago) may have involved a 'Snowball Earth' with a very great impact on the algae (sensu lato) of the time (cyanobacteria, Chlorophyta and Rhodophyta) and especially those that were adapted to warm habitats. By contrast, it is possible that heterokont, dinophyte and haptophyte phototrophs only evolved after the Carboniferous-Permian ice age (approx. 250 Ma ago) and so did not encounter low (</=5 degrees C) sea surface temperatures until the Antarctic cooled some 15 Ma ago. Despite this, many of the dominant macroalgae in cooler seas today are (heterokont) brown algae, and many laminarians cannot reproduce at temperatures above 18-25 degrees C. By contrast to plants in the aerial environment, photosynthetic structures in water are at essentially the same temperature as the fluid medium. The impact of low temperatures on photosynthesis by marine macrophytes is predicted to favour diffusive CO(2) entry rather than a CO(2)-concentrating mechanism. Some evidence favours this suggestion, but more data are needed.

摘要

大量证据表明生命起源于热液生境,自蓝细菌起源(至少25亿年前)和真核藻类起源(至少21亿年前)以来的大部分时间里,平均海表温度和陆地表面温度都比现在高。然而,在更新世冰川作用之前至少有四次重大的冰川事件。其中两次(约21亿年前和7亿年前)可能涉及“雪球地球”,对当时的藻类(广义)(蓝细菌、绿藻和红藻),尤其是那些适应温暖生境的藻类产生了巨大影响。相比之下,不等鞭毛类、甲藻和定鞭藻光合生物可能直到石炭纪 - 二叠纪冰期(约2.5亿年前)之后才进化出来,因此直到约1500万年前南极变冷之前都没有遭遇过低(≤5摄氏度)的海表温度。尽管如此,如今较寒冷海域中的许多优势大型藻类是(不等鞭毛类)褐藻,而且许多海带在温度高于18 - 25摄氏度时无法繁殖。与陆地环境中的植物不同,水中的光合结构与流体介质的温度基本相同。预计低温对海洋大型植物光合作用的影响有利于扩散性二氧化碳进入,而不是二氧化碳浓缩机制。一些证据支持这一观点,但还需要更多数据。

相似文献

1
Seaweeds in cold seas: evolution and carbon acquisition.
Ann Bot. 2002 Oct;90(4):525-36. doi: 10.1093/aob/mcf171.
2
Ecophysiology of photosynthesis in macroalgae.
Photosynth Res. 2012 Sep;113(1-3):105-25. doi: 10.1007/s11120-012-9768-z. Epub 2012 Jul 28.
3
Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.
PLoS One. 2015 Jul 14;10(7):e0132806. doi: 10.1371/journal.pone.0132806. eCollection 2015.
4
Polar oceans in a changing climate.
Curr Biol. 2017 Jun 5;27(11):R454-R460. doi: 10.1016/j.cub.2017.01.045.
5
Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.
PLoS One. 2011;6(11):e27973. doi: 10.1371/journal.pone.0027973. Epub 2011 Nov 18.
6
Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy.
J Plant Physiol. 2022 Jan;268:153557. doi: 10.1016/j.jplph.2021.153557. Epub 2021 Nov 13.
7
Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems?
Photosynth Res. 2011 Sep;109(1-3):257-67. doi: 10.1007/s11120-011-9646-0. Epub 2011 Mar 29.
8
Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time.
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2745-54. doi: 10.1098/rstb.2008.0057.
9
Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae.
Sci Rep. 2022 Dec 19;12(1):21947. doi: 10.1038/s41598-022-26517-z.

引用本文的文献

1
Differences by origin in methylome suggest eco-phenotypes in the kelp .
Evol Appl. 2022 May 11;16(2):262-278. doi: 10.1111/eva.13382. eCollection 2023 Feb.
2
Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae.
Sci Rep. 2022 Dec 19;12(1):21947. doi: 10.1038/s41598-022-26517-z.
3
Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics.
Biology (Basel). 2022 Aug 12;11(8):1209. doi: 10.3390/biology11081209.
4
Metagenome-Assembled Genomes From Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed.
Front Microbiol. 2022 Mar 23;13:857901. doi: 10.3389/fmicb.2022.857901. eCollection 2022.
8
Functional Traits for Carbon Access in Macrophytes.
PLoS One. 2016 Jul 14;11(7):e0159062. doi: 10.1371/journal.pone.0159062. eCollection 2016.
9
Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar.
Photosynth Res. 2016 Mar;127(3):295-305. doi: 10.1007/s11120-015-0184-z. Epub 2015 Aug 15.
10
Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.
PLoS One. 2015 Jul 14;10(7):e0132806. doi: 10.1371/journal.pone.0132806. eCollection 2015.

本文引用的文献

1
The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants.
New Phytol. 1990 Nov;116(3):505-529. doi: 10.1111/j.1469-8137.1990.tb00536.x.
2
3
Discrimination betweenC andC by marine plants.
Oecologia. 1992 Oct;91(4):481-492. doi: 10.1007/BF00650320.
5
Arctic biogeography: The paradox of the marine benthic fauna and flora.
Trends Ecol Evol. 1992 Jun;7(6):183-9. doi: 10.1016/0169-5347(92)90070-R.
7
Wave energy and intertidal productivity.
Proc Natl Acad Sci U S A. 1987 Mar;84(5):1314-8. doi: 10.1073/pnas.84.5.1314.
8
Reassessing the evidence for the earliest traces of life.
Nature. 2002 Aug 8;418(6898):627-30. doi: 10.1038/nature00934.
9
Ecology of southern ocean pack ice.
Adv Mar Biol. 2002;43:171-276. doi: 10.1016/s0065-2881(02)43005-2.
10
Questioning the evidence for Earth's oldest fossils.
Nature. 2002 Mar 7;416(6876):76-81. doi: 10.1038/416076a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验