Suppr超能文献

甲烷、氧气、光合作用、核酮糖-1,5-二磷酸羧化酶/加氧酶以及空气随时间的调节

Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time.

作者信息

Nisbet Euan G, Nisbet R Ellen R

机构信息

Department of Geology, Royal Holloway, University of London, Egham, Surrey, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2745-54. doi: 10.1098/rstb.2008.0057.

Abstract

Rubisco I's specificity, which today may be almost perfectly tuned to the task of cultivating the global garden, controlled the balance of carbon gases and O(2) in the Precambrian ocean and hence, by equilibration, in the air. Control of CO(2) and O(2) by rubisco I, coupled with CH(4) from methanogens, has for the past 2.9 Ga directed the global greenhouse warming, which maintains liquid oceans and sustains microbial ecology.Both rubisco compensation controls and the danger of greenhouse runaway (e.g. glaciation) put limits on biological productivity. Rubisco may sustain the air in either of two permissible stable states: either an anoxic system with greenhouse warming supported by both high methane mixing ratios as well as carbon dioxide, or an oxygen-rich system in which CO(2) largely fulfils the role of managing greenhouse gas, and in which methane is necessarily only a trace greenhouse gas, as is N(2)O. Transition from the anoxic to the oxic state risks glaciation. CO(2) build-up during a global snowball may be an essential precursor to a CO(2)-dominated greenhouse with high levels of atmospheric O(2). Photosynthetic and greenhouse-controlling competitions between marine algae, cyanobacteria, and terrestrial C3 and C4 plants may collectively set the CO(2) : O(2) ratio of the modern atmosphere (last few million years ago in a mainly glacial epoch), maximizing the productivity close to rubisco compensation and glacial limits.

摘要

如今,核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco I)的特异性几乎已完美适应了培育全球“花园”的任务,它曾控制着前寒武纪海洋中碳气体与氧气的平衡,进而通过平衡作用控制了空气中的碳气体与氧气平衡。Rubisco I对二氧化碳和氧气的控制,再加上产甲烷菌产生的甲烷,在过去29亿年里主导着全球温室效应,维持着液态海洋并维系着微生物生态。Rubisco的补偿控制以及温室效应失控(如冰川作用)的危险都对生物生产力构成了限制。Rubisco可能使空气维持在两种允许的稳定状态之一:一种是缺氧系统,由高甲烷混合比以及二氧化碳共同支持温室效应;另一种是富氧系统,其中二氧化碳在很大程度上承担着管理温室气体的角色,而甲烷必然只是一种微量温室气体,一氧化二氮也是如此。从缺氧状态向有氧状态的转变有引发冰川作用的风险。全球雪球事件期间二氧化碳的积累可能是形成以二氧化碳为主导、大气中氧气含量高的温室效应的重要先决条件。海洋藻类、蓝细菌以及陆地C3和C4植物之间的光合作用和温室效应控制竞争可能共同设定了现代大气(在主要为冰川期的过去几百万年里)的二氧化碳与氧气比例,使生产力在接近Rubisco补偿和冰川极限的情况下达到最大化。

相似文献

引用本文的文献

1
Rubisco is evolving for improved catalytic efficiency and CO assimilation in plants.Rubisco 正在进化,以提高植物的催化效率和 CO 同化。
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2321050121. doi: 10.1073/pnas.2321050121. Epub 2024 Mar 5.
4
The recurrent assembly of C4 photosynthesis, an evolutionary tale.C4 光合作用的反复组装:一个进化的故事。
Photosynth Res. 2013 Nov;117(1-3):163-75. doi: 10.1007/s11120-013-9852-z. Epub 2013 May 24.
6
Photosynthetic and atmospheric evolution. Introduction.光合作用与大气演化。引言。
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2625-8. doi: 10.1098/rstb.2008.0058.
7
Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere.地球大气中氧气增加过程中的进化生态学。
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2651-64. doi: 10.1098/rstb.2008.0018.

本文引用的文献

2
When did oxygenic photosynthesis evolve?产氧光合作用是何时进化而来的?
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2731-43. doi: 10.1098/rstb.2008.0041.
7
Palaeoclimates: the first two billion years.古气候:最初的二十亿年
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):917-29. doi: 10.1098/rstb.2006.1839.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验