Nisbet Euan G, Nisbet R Ellen R
Department of Geology, Royal Holloway, University of London, Egham, Surrey, UK.
Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2745-54. doi: 10.1098/rstb.2008.0057.
Rubisco I's specificity, which today may be almost perfectly tuned to the task of cultivating the global garden, controlled the balance of carbon gases and O(2) in the Precambrian ocean and hence, by equilibration, in the air. Control of CO(2) and O(2) by rubisco I, coupled with CH(4) from methanogens, has for the past 2.9 Ga directed the global greenhouse warming, which maintains liquid oceans and sustains microbial ecology.Both rubisco compensation controls and the danger of greenhouse runaway (e.g. glaciation) put limits on biological productivity. Rubisco may sustain the air in either of two permissible stable states: either an anoxic system with greenhouse warming supported by both high methane mixing ratios as well as carbon dioxide, or an oxygen-rich system in which CO(2) largely fulfils the role of managing greenhouse gas, and in which methane is necessarily only a trace greenhouse gas, as is N(2)O. Transition from the anoxic to the oxic state risks glaciation. CO(2) build-up during a global snowball may be an essential precursor to a CO(2)-dominated greenhouse with high levels of atmospheric O(2). Photosynthetic and greenhouse-controlling competitions between marine algae, cyanobacteria, and terrestrial C3 and C4 plants may collectively set the CO(2) : O(2) ratio of the modern atmosphere (last few million years ago in a mainly glacial epoch), maximizing the productivity close to rubisco compensation and glacial limits.
如今,核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco I)的特异性几乎已完美适应了培育全球“花园”的任务,它曾控制着前寒武纪海洋中碳气体与氧气的平衡,进而通过平衡作用控制了空气中的碳气体与氧气平衡。Rubisco I对二氧化碳和氧气的控制,再加上产甲烷菌产生的甲烷,在过去29亿年里主导着全球温室效应,维持着液态海洋并维系着微生物生态。Rubisco的补偿控制以及温室效应失控(如冰川作用)的危险都对生物生产力构成了限制。Rubisco可能使空气维持在两种允许的稳定状态之一:一种是缺氧系统,由高甲烷混合比以及二氧化碳共同支持温室效应;另一种是富氧系统,其中二氧化碳在很大程度上承担着管理温室气体的角色,而甲烷必然只是一种微量温室气体,一氧化二氮也是如此。从缺氧状态向有氧状态的转变有引发冰川作用的风险。全球雪球事件期间二氧化碳的积累可能是形成以二氧化碳为主导、大气中氧气含量高的温室效应的重要先决条件。海洋藻类、蓝细菌以及陆地C3和C4植物之间的光合作用和温室效应控制竞争可能共同设定了现代大气(在主要为冰川期的过去几百万年里)的二氧化碳与氧气比例,使生产力在接近Rubisco补偿和冰川极限的情况下达到最大化。