Suppr超能文献

洗涤剂中蛋白质的去折叠:胶束结构、离子强度、pH值和温度的影响。

Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature.

作者信息

Otzen Daniel E

机构信息

Department of Life Sciences, Aalborg University, Denmark.

出版信息

Biophys J. 2002 Oct;83(4):2219-30. doi: 10.1016/S0006-3495(02)73982-9.

Abstract

The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents.

摘要

101个氨基酸残基的单体蛋白S6在临界胶束浓度以上的阴离子去污剂十二烷基硫酸钠(SDS)中会发生解折叠,其解折叠速率根据两种不同模式而变化。我们小组提出,球形胶束会导致解折叠中的饱和动力学(模式1),而在较高SDS浓度下普遍存在的圆柱形胶束会诱导解折叠速率呈幂律依赖性增加(模式2)。在此,我更详细地研究胶束性质如何影响蛋白质解折叠。高NaCl浓度会诱导形成圆柱形胶束,有利于模式2。这与我们的模型一致,不过诸如静电屏蔽等其他效应也不能忽视。此外,在阳离子去污剂LTAB中不会以模式2发生解折叠,因为LTAB无法形成圆柱形胶束。在较高LTAB浓度下会出现强烈的解折叠延迟,这可能是由于形成了终态蛋白质 - 去污剂复合物。在无盐的SDS中也观察到类似但弱得多的效应。胰凝乳蛋白酶抑制剂2在SDS中的解折叠模式与S6相同,表明这种蛋白质解折叠类型并非S6所特有。模式1中的解折叠过程具有与在水中大小相似的活化能垒,而模式2中的活化能垒强烈依赖于浓度。在SDS和LTAB中解折叠对pH的强烈依赖性表明,阴离子去污剂中的解折叠速率受去污剂头基与阴离子侧链之间的排斥作用调节,而阳离子侧链则调节阳离子去污剂中的解折叠速率。

相似文献

1
Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature.
Biophys J. 2002 Oct;83(4):2219-30. doi: 10.1016/S0006-3495(02)73982-9.
2
Burst-phase expansion of native protein prior to global unfolding in SDS.
J Mol Biol. 2002 Feb 1;315(5):1231-40. doi: 10.1006/jmbi.2001.5300.
3
On the mechanism of SDS-induced protein denaturation.
Biopolymers. 2010 Feb;93(2):186-99. doi: 10.1002/bip.21318.
4
Thermodynamics of unfolding of an integral membrane protein in mixed micelles.
Protein Sci. 2006 Apr;15(4):890-9. doi: 10.1110/ps.052031306.
5
Using micellar mole fractions to assess membrane protein stability in mixed micelles.
Biochim Biophys Acta. 2005 Oct 1;1716(1):59-68. doi: 10.1016/j.bbamem.2005.08.006.
6
Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents.
Biochemistry. 2005 Feb 8;44(5):1719-30. doi: 10.1021/bi0479757.
7
Aggregation of S6 in a quasi-native state by sub-micellar SDS.
Biochim Biophys Acta. 2008 Feb;1784(2):400-14. doi: 10.1016/j.bbapap.2007.11.010. Epub 2007 Nov 28.
8
Unfolding of beta-sheet proteins in SDS.
Biophys J. 2007 May 15;92(10):3674-85. doi: 10.1529/biophysj.106.101238. Epub 2007 Mar 9.
9
Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
Biophys J. 2002 Sep;83(3):1547-56. doi: 10.1016/S0006-3495(02)73924-6.
10
Versatile interactions of the antimicrobial peptide novispirin with detergents and lipids.
Biochemistry. 2006 Jan 17;45(2):481-97. doi: 10.1021/bi051876r.

引用本文的文献

3
A thermodynamic investigation into protein-excipient interactions involving different grades of polysorbate 20 and 80.
J Therm Anal Calorim. 2024;149(23):13941-13951. doi: 10.1007/s10973-024-13533-6. Epub 2024 Aug 25.
4
Screening of spp. bacterial endophytes for protease production, and application in feather degradation and bio-detergent additive.
Heliyon. 2024 May 4;10(9):e30736. doi: 10.1016/j.heliyon.2024.e30736. eCollection 2024 May 15.
5
Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design.
Mol Biotechnol. 2025 Mar;67(3):862-884. doi: 10.1007/s12033-024-01119-4. Epub 2024 Mar 18.
6
Kinetics of Structural Transitions Induced by Sodium Dodecyl Sulfate in α-Chymotrypsin.
ACS Omega. 2023 Dec 13;8(51):49137-49149. doi: 10.1021/acsomega.3c07256. eCollection 2023 Dec 26.
7
Overview of Membrane Protein Sample Preparation for Single-Particle Cryo-Electron Microscopy Analysis.
Int J Mol Sci. 2023 Sep 30;24(19):14785. doi: 10.3390/ijms241914785.
8
Observation of a Two-Dimensional Hydrophobic Collapse at the Surface of Water Using Heterodyne-Detected Surface Sum-Frequency Generation.
J Phys Chem Lett. 2023 Oct 19;14(41):9285-9290. doi: 10.1021/acs.jpclett.3c01530. Epub 2023 Oct 10.
9
Solution NMR investigations of integral membrane proteins: Challenges and innovations.
Curr Opin Struct Biol. 2023 Oct;82:102654. doi: 10.1016/j.sbi.2023.102654. Epub 2023 Aug 3.

本文引用的文献

2
Enthalpy-entropy compensation: a phantom phenomenon.
J Biosci. 2002 Mar;27(2):121-6. doi: 10.1007/BF02703768.
3
4
Burst-phase expansion of native protein prior to global unfolding in SDS.
J Mol Biol. 2002 Feb 1;315(5):1231-40. doi: 10.1006/jmbi.2001.5300.
8
A biophysical study of integral membrane protein folding.
Biochemistry. 1997 Dec 9;36(49):15156-76. doi: 10.1021/bi970146j.
9
Statistical Effects of the Binding of Ionic Surfactant to Protein.
J Colloid Interface Sci. 1997 Aug 15;192(2):415-9. doi: 10.1006/jcis.1997.4999.
10
How Hofmeister ion interactions affect protein stability.
Biophys J. 1996 Oct;71(4):2056-63. doi: 10.1016/S0006-3495(96)79404-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验