Suppr超能文献

Synthesis and characterization of volatile, fluorine-free beta-ketoiminate lanthanide MOCVD precursors and their implementation in low-temperature growth of epitaxial CeO(2) buffer layers for superconducting electronics.

作者信息

Edleman Nikki L, Wang Anchuan, Belot John A, Metz Andrew W, Babcock Jason R, Kawaoka Amber M, Ni Jun, Metz Matthew V, Flaschenriem Christine J, Stern Charlotte L, Liable-Sands Louise M, Rheingold Arnold L, Markworth Paul R, Chang Robert P H, Chudzik Michael P, Kannewurf Carl R, Marks Tobin J

机构信息

Department of Chemistry, Materials Research Center, Northwestern University, Evanston, IL 60208, USA.

出版信息

Inorg Chem. 2002 Oct 7;41(20):5005-23. doi: 10.1021/ic020299h.

Abstract

A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric Ce, Nd, Gd, and Er complexes are coordinatively saturated by a versatile, multidentate ether-functionalized beta-ketoiminato ligand series, the melting point and volatility characteristics of which can be tuned by altering the alkyl substituents on the keto, imino, and ether sites of the ligand. Direct comparison with conventional lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO(2) buffer layer films can be grown on (001) YSZ substrates by MOCVD at significantly lower temperatures (450-650 degrees C) than previously possible by using one of the newly developed cerium beta-ketoiminate precursors. Films deposited at 540 degrees C have good out-of-plane (Deltaomega = 0.85 degrees ) and in-plane (Deltaphi = 1.65 degrees ) alignment and smooth surfaces (rms roughness approximately 4.3 A). The film growth rate decreases and the films tend to be smoother as the deposition temperature is increased. High-quality yttrium barium copper oxide (YBCO) films grown on these CeO(2) buffer layers by pulsed organometallic molecular beam epitaxy exhibit very good electrical transport properties (T(c) = 86.5 K, J(c) = 1.08 x 10(6) A/cm(2) at 77.4 K).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验