Gieseg Michael A, Cody Theresa, Man Michael Z, Madore Steven J, Rubin Mark A, Kaldjian Eric P
Pfizer Global Research & Development, 2800 Plymouth Rd, Ann Arbor, Michigan 48105, USA.
BMC Bioinformatics. 2002 Sep 30;3:26. doi: 10.1186/1471-2105-3-26.
Molecular characterization has contributed to the understanding of the inception, progression, treatment and prognosis of cancer. Nucleic acid array-based technologies extend molecular characterization of tumors to thousands of gene products. To effectively discriminate between tumor sub-types, reliable laboratory techniques and analytic methods are required.
We derived mRNA expression profiles from 21 human tissue samples (eight normal kidneys and 13 kidney tumors) and two pooled samples using the Affymetrix GeneChip platform. A panel of ten clustering algorithms combined with four data pre-processing methods identified a consensus cluster dendrogram in 18 of 40 analyses and of these 16 used a logarithmic transformation. Within the consensus dendrogram the expression profiles of the samples grouped according to tissue type; clear cell and chromophobe carcinomas displayed distinctly different gene expression patterns. By using a rigorous statistical selection based method we identified 355 genes that showed significant (p < 0.001) gene expression changes in clear cell renal carcinomas compared to normal kidney. These genes were classified with a tool to conceptualize expression patterns called "Functional Taxonomy". Each tumor type had a distinct "signature," with a high number of genes in the categories of Metabolism, Signal Transduction, and Cellular and Matrix Organization and Adhesion.
Affymetrix GeneChip profiling differentiated clear cell and chromophobe carcinomas from one another and from normal kidney cortex. Clustering methods that used logarithmic transformation of data sets produced dendrograms consistent with the sample biology. Functional taxonomy provided a practical approach to the interpretation of gene expression data.
分子特征分析有助于理解癌症的发生、发展、治疗及预后。基于核酸阵列的技术将肿瘤的分子特征分析扩展到数千种基因产物。为有效区分肿瘤亚型,需要可靠的实验室技术和分析方法。
我们使用Affymetrix基因芯片平台从21个人体组织样本(8个正常肾脏和13个肾肿瘤)以及两个混合样本中获得了mRNA表达谱。一组十种聚类算法与四种数据预处理方法相结合,在40次分析中的18次中识别出了一个共识聚类树状图,其中16次使用了对数转换。在共识树状图中,样本的表达谱根据组织类型进行分组;透明细胞癌和嫌色细胞癌表现出明显不同的基因表达模式。通过使用一种严格的基于统计选择的方法,我们鉴定出355个基因,与正常肾脏相比,这些基因在透明细胞肾细胞癌中显示出显著(p < 0.001)的基因表达变化。这些基因用一种名为“功能分类法”的工具进行分类,以概念化表达模式。每种肿瘤类型都有独特的“特征”,在代谢、信号转导以及细胞和基质组织与黏附类别中有大量基因。
Affymetrix基因芯片分析能够区分透明细胞癌和嫌色细胞癌以及它们与正常肾皮质的差异。使用数据集对数转换的聚类方法产生的树状图与样本生物学一致。功能分类法为基因表达数据的解释提供了一种实用方法。