Suppr超能文献

将急性毒性生物配体模型扩展为基于生理学的虹鳟(Oncorhynchus mykiss)暴露于银后的存活时间模型。

Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver.

作者信息

Paquin Paul R, Zoltay Viktoria, Winfield Richard P, Wu Kuen Benjamin, Mathew Rooni, Santore Robert C, Di Toro Dominic M

机构信息

HydroQual Inc., 1 Lethbridge Plaza, Mahwah, NJ 07430, USA.

出版信息

Comp Biochem Physiol C Toxicol Pharmacol. 2002 Sep;133(1-2):305-43. doi: 10.1016/s1532-0456(02)00105-9.

Abstract

Chemical speciation controls the bioavailability and toxicity of metals in aquatic systems and regulatory agencies are recognizing this as they develop updated water quality criteria (WQC) for metals. The factors that affect bioavailability may be quantitatively evaluated with the biotic ligand model (BLM). Within the context of the BLM framework, the 'biotic ligand' is the site where metal binding results in the manifestation of a toxic effect. While the BLM does account for the speciation and complexation of dissolved metal in solution, and competition among the free metal ion and other cations for binding sites at the biotic ligand, it does not explicitly consider either the physiological effects of metals on aquatic organisms, or the direct effect of water chemistry parameters such as pH, Ca(2+)and Na(+) on the physiological state of the organism. Here, a physiologically-based model of survival time is described. In addition to incorporating the effects of water chemistry on metal availability to the organism, via the BLM, it also considers the interaction of water chemistry on the physiological condition of the organism, independent of its effect on metal availability. At the same time it explicitly considers the degree of interaction of these factors with the organism and how this affects the rate at which cumulative damage occurs. An example application of the model to toxicity data for rainbow trout exposed to silver is presented to illustrate how this framework may be used to predict survival time for alternative exposure durations. The sodium balance model (SBM) that is described herein, a specific application of a more generic ion balance model (IBM) framework, adds a new physiological dimension to the previously developed BLM. As such it also necessarily adds another layer of complexity to this already useful predictive framework. While the demonstrated capability of the SBM to predict effects in relation to exposure duration is a useful feature of this mechanistically-based framework, it is envisioned that, with suitable refinements, it may also have utility in other areas of toxicological and regulatory interest. Such areas include the analysis of time variable exposure conditions, residual after-effects of exposure to metals, acclimation, chronic toxicity and species and genus sensitivity. Each of these is of potential utility to longer-term ongoing efforts to develop and refine WQC for metals.

摘要

化学形态控制着水生系统中金属的生物可利用性和毒性,监管机构在制定金属的更新水质标准(WQC)时也认识到了这一点。影响生物可利用性的因素可以通过生物配体模型(BLM)进行定量评估。在BLM框架内,“生物配体”是金属结合导致毒性效应表现的位点。虽然BLM确实考虑了溶液中溶解金属的形态和络合作用,以及游离金属离子和其他阳离子在生物配体上争夺结合位点的竞争,但它没有明确考虑金属对水生生物的生理影响,也没有考虑水化学参数(如pH、Ca(2+)和Na(+))对生物体生理状态的直接影响。在此,描述了一个基于生理的存活时间模型。除了通过BLM纳入水化学对生物体金属可利用性的影响外,它还考虑了水化学对生物体生理状况的相互作用,而不考虑其对金属可利用性的影响。同时,它明确考虑了这些因素与生物体的相互作用程度以及这如何影响累积损伤发生的速率。给出了该模型在暴露于银的虹鳟鱼毒性数据中的应用示例,以说明该框架可如何用于预测不同暴露持续时间的存活时间。本文所述的钠平衡模型(SBM)是更通用的离子平衡模型(IBM)框架的一个具体应用,为先前开发的BLM增加了一个新的生理维度。因此,它必然也给这个已经很有用的预测框架增加了另一层复杂性。虽然SBM预测与暴露持续时间相关效应的能力是这个基于机制的框架的一个有用特征,但可以设想,经过适当改进后,它在毒理学和监管关注的其他领域也可能有用。这些领域包括对随时间变化的暴露条件的分析、金属暴露的残留后效应、驯化、慢性毒性以及物种和属的敏感性。这些对于长期持续开展的制定和完善金属WQC的工作都具有潜在的用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验