Suppr超能文献

从蛋白质-蛋白质相互作用推断结构域-结构域相互作用。

Inferring domain-domain interactions from protein-protein interactions.

作者信息

Deng Minghua, Mehta Shipra, Sun Fengzhu, Chen Ting

机构信息

Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.

出版信息

Genome Res. 2002 Oct;12(10):1540-8. doi: 10.1101/gr.153002.

Abstract

The interaction between proteins is one of the most important features of protein functions. Behind protein-protein interactions there are protein domains interacting physically with one another to perform the necessary functions. Therefore, understanding protein interactions at the domain level gives a global view of the protein interaction network, and possibly of protein functions. Two research groups used yeast two-hybrid assays to generate 5719 interactions between proteins of the yeast Saccharomyces cerevisiae. This allows us to study the large-scale conserved patterns of interactions between protein domains. Using evolutionarily conserved domains defined in a protein-domain database called PFAM (http://PFAM.wustl.edu), we apply a Maximum Likelihood Estimation method to infer interacting domains that are consistent with the observed protein-protein interactions. We estimate the probabilities of interactions between every pair of domains and measure the accuracies of our predictions at the protein level. Using the inferred domain-domain interactions, we predict interactions between proteins. Our predicted protein-protein interactions have a significant overlap with the protein-protein interactions (MIPS: http://mips.gfs.de) obtained by methods other than the two-hybrid assays. The mean correlation coefficient of the gene expression profiles for our predicted interaction pairs is significantly higher than that for random pairs. Our method has shown robustness in analyzing incomplete data sets and dealing with various experimental errors. We found several novel protein-protein interactions such as RPS0A interacting with APG17 and TAF40 interacting with SPT3, which are consistent with the functions of the proteins.

摘要

蛋白质之间的相互作用是蛋白质功能最重要的特征之一。在蛋白质 - 蛋白质相互作用的背后,是蛋白质结构域相互物理作用以执行必要的功能。因此,在结构域水平上理解蛋白质相互作用能让我们全面了解蛋白质相互作用网络,甚至可能了解蛋白质的功能。两个研究小组利用酵母双杂交试验生成了酿酒酵母蛋白质之间的5719种相互作用。这使我们能够研究蛋白质结构域之间相互作用的大规模保守模式。利用在一个名为PFAM(http://PFAM.wustl.edu)的蛋白质结构域数据库中定义的进化保守结构域,我们应用最大似然估计方法来推断与观察到的蛋白质 - 蛋白质相互作用一致的相互作用结构域。我们估计每对结构域之间相互作用的概率,并在蛋白质水平上衡量我们预测的准确性。利用推断出的结构域 - 结构域相互作用,我们预测蛋白质之间的相互作用。我们预测的蛋白质 - 蛋白质相互作用与通过双杂交试验以外的方法获得的蛋白质 - 蛋白质相互作用(MIPS:http://mips.gfs.de)有显著重叠。我们预测的相互作用对的基因表达谱的平均相关系数明显高于随机对的相关系数。我们的方法在分析不完整数据集和处理各种实验误差方面表现出稳健性。我们发现了几种新的蛋白质 - 蛋白质相互作用,如RPS0A与APG17相互作用以及TAF40与SPT3相互作用,这与蛋白质的功能一致。

相似文献

引用本文的文献

4
Computational Network Inference for Bacterial Interactomics.计算网络推断在细菌相互作用组学中的应用。
mSystems. 2022 Apr 26;7(2):e0145621. doi: 10.1128/msystems.01456-21. Epub 2022 Mar 30.
8
Prediction of Protein-Protein Interactions Based on Domain.基于结构域的蛋白质-蛋白质相互作用预测。
Comput Math Methods Med. 2019 Aug 21;2019:5238406. doi: 10.1155/2019/5238406. eCollection 2019.
9
From sequencing data to gene functions: co-functional network approaches.从测序数据到基因功能:共功能网络方法
Anim Cells Syst (Seoul). 2017 Jan 31;21(2):77-83. doi: 10.1080/19768354.2017.1284156. eCollection 2017.

本文引用的文献

2
The Pfam protein families database.Pfam蛋白质家族数据库。
Nucleic Acids Res. 2002 Jan 1;30(1):276-80. doi: 10.1093/nar/30.1.276.
4
Is there a bias in proteome research?蛋白质组研究中存在偏差吗?
Genome Res. 2001 Dec;11(12):1971-3. doi: 10.1101/gr.206701.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验