Suppr超能文献

Growth hormone protects against radiotherapy-induced cell death.

作者信息

Madrid Olga, Varea Silvia, Sanchez-Perez Isabel, Gomez-Garcia Lourdes, De Miguel Enrique, Gomez De Segura Ignacio A, Perona Rosario

机构信息

Instituto de Investigaciones Biomedicas del CSIC/UAM, Arturo Duperier 4, Madrid 28029, Spain.

出版信息

Eur J Endocrinol. 2002 Oct;147(4):535-41. doi: 10.1530/eje.0.1470535.

Abstract

BACKGROUND

In vivo treatment with growth hormone reduces radiation-associated mortality. The molecular mechanisms underlying this effect are unknown. It has been described that increased sensitivity to ionising radiation can be due to defects in machinery involved in detection and/or repair of DNA double-strand breaks.

OBJECTIVE

To study the mechanisms involved in growth hormone action on the increased survival in irradiated cells.

MATERIALS AND METHODS

CHO-4 cells stably expressing the growth hormone receptor were used. A cell viability assay was carried out to analyse the increase in survival induced by growth hormone in irradiated cells. To investigate whether the DNA repair mechanism could be implicated in this effect we performed DNA reactivation assays using pHIV-LUC and pCMV-betagal plasmids as control. Identical studies were also conducted using the radiomimetic drug, bleomycin.

RESULTS

Growth hormone protects CHO-4 cells from bleomycin- and radiation-induced cell death. In pHIV-LUC transfected cells, a time-dependent decrease in luciferase activity was observed after irradiation in the absence of growth hormone. However, cells pretreated with this hormone maintained reporter activity. When cells were transfected with irradiated pHIV-LUC plasmid, only the hormone-treated cells recovered the transcriptional activity.

CONCLUSIONS

Growth hormone exerts a radioprotective effect in CHO-4 cells stably transfected with the complementary DNA for the rat growth hormone receptor. The radioprotection is triggered directly by the hormone and it is also observed with bleomycin. The increased survival in response to radiation and bleomycin treatment induced by growth hormone correlates with an enhanced ability of the cells to repair damaged DNA.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验