Suppr超能文献

血管性血友病因子/整合素A结构域的分布与演化:广泛分布的结构域,在细胞黏附及其他方面发挥作用。

Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere.

作者信息

Whittaker Charles A, Hynes Richard O

机构信息

Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Mol Biol Cell. 2002 Oct;13(10):3369-87. doi: 10.1091/mbc.e02-05-0259.

Abstract

The von Willebrand A (VWA) domain is a well-studied domain involved in cell adhesion, in extracellular matrix proteins, and in integrin receptors. A number of human diseases arise from mutations in VWA domains. We have analyzed the phylogenetic distribution of this domain and the relationships among approximately 500 proteins containing this domain. Although the majority of VWA-containing proteins are extracellular, the most ancient ones, present in all eukaryotes, are all intracellular proteins involved in functions such as transcription, DNA repair, ribosomal and membrane transport, and the proteasome. A common feature seems to be involvement in multiprotein complexes. Subsequent evolution involved deployment of VWA domains by Metazoa in extracellular proteins involved in cell adhesion such as integrin beta subunits (all Metazoa). Nematodes and chordates separately expanded their complements of extracellular matrix proteins containing VWA domains, whereas plants expanded their intracellular complement. Chordates developed VWA-containing integrin alpha subunits, collagens, and other extracellular matrix proteins (e.g., matrilins, cochlin/vitrin, and von Willebrand factor). Consideration of the known properties of VWA domains in integrins and extracellular matrix proteins allows insights into their involvement in protein-protein interactions and the roles of bound divalent cations and conformational changes. These allow inferences about similar functions in novel situations such as protease regulators (e.g., complement factors and trypsin inhibitors) and intracellular proteins (e.g., helicases, chelatases, and copines).

摘要

血管性血友病因子A(VWA)结构域是一个经过充分研究的结构域,它参与细胞黏附、细胞外基质蛋白以及整合素受体的相关过程。许多人类疾病都源于VWA结构域的突变。我们分析了该结构域的系统发育分布以及大约500种含有此结构域的蛋白质之间的关系。尽管大多数含VWA的蛋白质位于细胞外,但所有真核生物中最古老的含VWA蛋白质都是细胞内蛋白质,参与转录、DNA修复、核糖体和膜运输以及蛋白酶体等功能。一个共同特征似乎是参与多蛋白复合物。随后的进化过程中,后生动物将VWA结构域应用于参与细胞黏附的细胞外蛋白质中,如整合素β亚基(所有后生动物)。线虫和脊索动物分别扩展了它们含VWA结构域的细胞外基质蛋白的种类,而植物则扩展了其细胞内含VWA结构域蛋白质的种类。脊索动物进化出了含VWA的整合素α亚基、胶原蛋白和其他细胞外基质蛋白(如基质蛋白、耳蜗蛋白/玻璃体结合蛋白和血管性血友病因子)。考虑到整合素和细胞外基质蛋白中VWA结构域的已知特性,有助于深入了解它们在蛋白质 - 蛋白质相互作用中的作用以及结合的二价阳离子和构象变化的作用。这些有助于推断在新情况下的类似功能,如蛋白酶调节剂(如补体因子和胰蛋白酶抑制剂)和细胞内蛋白质(如解旋酶、螯合酶和共结合蛋白)。

相似文献

2
Complement and the multifaceted functions of VWA and integrin I domains.
Structure. 2006 Nov;14(11):1611-6. doi: 10.1016/j.str.2006.10.001.
3
Evolution of integrin I domains.
Adv Exp Med Biol. 2014;819:1-19. doi: 10.1007/978-94-017-9153-3_1.
5
Evolution of von Willebrand factor A (VWA) domains.
Biochem Soc Trans. 1999 Dec;27(6):835-40. doi: 10.1042/bst0270835.
6
Diversification of von Willebrand Factor A and Chitin-Binding Domains in Pif/BMSPs Among Mollusks.
J Mol Evol. 2024 Aug;92(4):415-431. doi: 10.1007/s00239-024-10180-1. Epub 2024 Jun 12.
10
Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6367-72. doi: 10.1073/pnas.0401506101. Epub 2004 Apr 12.

引用本文的文献

1
Molecular exaptation by the integrin αI domain.
Sci Adv. 2025 Sep 12;11(37):eadx9567. doi: 10.1126/sciadv.adx9567. Epub 2025 Sep 10.
2
1-Aminocyclopropane-1-carboxylic acid induces resource reallocation in sporophytes.
Front Plant Sci. 2025 Aug 15;16:1632530. doi: 10.3389/fpls.2025.1632530. eCollection 2025.
3
Prediction of virulence factors in bacterial hypothetical proteins.
Arch Microbiol. 2025 Aug 29;207(10):244. doi: 10.1007/s00203-025-04447-4.
4
Biochemistry and physiology of voltage-gated calcium channel trafficking: a target for gabapentinoid drugs.
Open Biol. 2025 Jul;15(7):250013. doi: 10.1098/rsob.250013. Epub 2025 Jul 16.
5
6
The E3 ubiquitin ligase PUB13 synergistically interacts with BON1 to regulate plant flowering and immunity.
Front Plant Sci. 2025 Jun 2;16:1585221. doi: 10.3389/fpls.2025.1585221. eCollection 2025.
8
Structural and molecular mechanisms of an Ro60 homolog from a Thermus bacteriophage.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf470.
9
Insights into the Red Seaweed Using an Integrative Multi-Omics Analysis.
Plants (Basel). 2025 May 19;14(10):1523. doi: 10.3390/plants14101523.

本文引用的文献

1
The Thrombospondin-related Protein Family of Apicomplexan Parasites: The Gears of the Cell Invasion Machinery.
Parasitol Today. 1998 Dec;14(12):479-84. doi: 10.1016/s0169-4758(98)01346-5.
2
Complex evolution of photosynthesis.
Annu Rev Plant Biol. 2002;53:503-21. doi: 10.1146/annurev.arplant.53.100301.135212.
3
Will the real integrin please stand up?
Structure. 2002 May;10(5):605-7. doi: 10.1016/s0969-2126(02)00766-9.
4
Conformational regulation of integrin structure and function.
Annu Rev Biophys Biomol Struct. 2002;31:485-516. doi: 10.1146/annurev.biophys.31.101101.140922. Epub 2001 Oct 25.
5
Molecular characterization of the DICE1 (DDX26) tumor suppressor gene in lung carcinoma cells.
Oncol Res. 2001;12(11-12):491-500. doi: 10.3727/096504001108747503.
8
Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand.
Science. 2002 Apr 5;296(5565):151-5. doi: 10.1126/science.1069040. Epub 2002 Mar 7.
9
Identification and analysis of collagen alpha 1(XXI), a novel member of the FACIT collagen family.
Matrix Biol. 2002 Jan;21(1):63-6. doi: 10.1016/s0945-053x(01)00176-7.
10
Activation-induced conformational changes in the I domain region of lymphocyte function-associated antigen 1.
J Biol Chem. 2002 Mar 22;277(12):10638-41. doi: 10.1074/jbc.M112417200. Epub 2002 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验