Suppr超能文献

破坏引起的互营丙酸和乙酸氧化变化:絮凝、细胞 proximity 和微生物活性。(注:此处“proximity”未准确翻译,可能是原文有误,若为“proximity”意为“接近”,推测可能是“proximity”应为“proximation”意为“接近、靠近”,翻译时按正确推测应为“破坏引起的互营丙酸和乙酸氧化变化:絮凝、细胞靠近和微生物活性。” )

Disruption-induced changes in syntrophic propionate and acetate oxidation: flocculation, cell proximity, and microbial activity.

作者信息

Weng Nils, Najafabadi Hossein Nadali, Westerholm Maria

机构信息

Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Department of Management and Engineering, Linköping University, 581 83, Linköping, Sweden.

出版信息

Biotechnol Biofuels Bioprod. 2025 Apr 19;18(1):45. doi: 10.1186/s13068-025-02644-3.

Abstract

BACKGROUND

Syntrophic propionate- and acetate-oxidising bacteria (SPOB and SAOB) play a crucial role in biogas production, particularly under high ammonia conditions that are common in anaerobic degradation of protein-rich waste streams. These bacteria rely on close interactions with hydrogenotrophic methanogens to facilitate interspecies electron transfer and maintain thermodynamic feasibility. However, the impact of mixing-induced disruption of these essential syntrophic interactions in biogas systems remains largely unexplored. This study investigates how magnetic stirring and orbital shaking influence degradation dynamics, microbial community composition, and gene expression in syntrophic enrichment communities under high-ammonia conditions.

RESULTS

Stirring significantly delayed the initiation of propionate degradation in one culture and completely inhibited it in the other two parallel cultures, whereas acetate degradation was less affected. Computational fluid dynamics modelling revealed that stirring generated higher shear rates (~ 20 s) and uniform cell distribution, while shaking led to lower shear rates and cell accumulation at the bottom of the culture bottle. Visual observations confirmed that stirring inhibited floc formation, while shaking promoted larger flocs compared to the static control condition, which formed smaller flocs and a sheet-like biofilm. Microbial community analysis identified substrate type and degradation progress as primary drivers of community structure, with motion displaying minimal influence. However, metatranscriptomic analysis revealed that motion-induced gene downregulation was associated with motility, surface sensing, and biofilm formation in SAOB and another bacterial species expressing genes for the glycine synthase reductase pathway. Stirring also suppressed oxalate-formate antiporter expression in SPOB, suggesting its dependence on spatial proximity for this energy-conserving mechanism. The strongest gene expression changes of stirring were observed in methanogens, indicating a coupling of the first and last steps of hydrogenotrophic methanogenesis, likely an adaptive strategy for efficient energy conservation. Other downregulated genes included ferrous iron transporters and electron transfer-associated enzymes.

CONCLUSIONS

This study highlights that stirring critically disrupts the initial syntrophic connection between SPOB and methanogens, whereas SAOB communities exhibit greater tolerance to shear stress and disruptive conditions that inhibits aggregate formation. These findings emphasize the importance of carefully managing mixing regimes, especially when attempting to reactivate ammonia-tolerant syntrophic propionate degraders in biogas systems experiencing rapid propionate accumulation under high-ammonia conditions.

摘要

背景

互营丙酸氧化菌和互营乙酸氧化菌(SPOB和SAOB)在沼气生产中发挥着关键作用,特别是在富含蛋白质的废物流厌氧降解中常见的高氨条件下。这些细菌依赖与氢营养型产甲烷菌的密切相互作用来促进种间电子传递并维持热力学可行性。然而,在沼气系统中,混合引起的这些基本互营相互作用的破坏所产生的影响在很大程度上仍未得到探索。本研究调查了磁力搅拌和回旋振荡如何影响高氨条件下互营富集群落中的降解动力学、微生物群落组成和基因表达。

结果

搅拌显著延迟了一种培养物中丙酸降解的起始,并在另外两个平行培养物中完全抑制了丙酸降解,而乙酸降解受影响较小。计算流体动力学建模表明,搅拌产生了更高的剪切速率(约20秒)和均匀的细胞分布,而振荡导致较低的剪切速率和细胞在培养瓶底部的积累。肉眼观察证实,搅拌抑制了絮凝物的形成,而与静态对照条件相比,振荡促进了更大絮凝物的形成,静态对照条件下形成了较小的絮凝物和片状生物膜。微生物群落分析确定底物类型和降解进程是群落结构的主要驱动因素,而搅拌对其影响最小。然而,宏转录组分析表明,搅拌诱导的基因下调与SAOB以及另一种表达甘氨酸合酶还原酶途径基因的细菌物种中的运动性、表面感知和生物膜形成有关。搅拌还抑制了SPOB中草酸盐 - 甲酸盐反向转运蛋白的表达,表明其这种节能机制对空间接近性的依赖性。在产甲烷菌中观察到搅拌引起的最强基因表达变化,表明氢营养型产甲烷作用的第一步和最后一步存在耦合,这可能是一种高效节能的适应性策略。其他下调的基因包括亚铁转运蛋白和电子传递相关酶。

结论

本研究强调搅拌严重破坏了SPOB和产甲烷菌之间最初的互营联系,而SAOB群落对抑制聚集体形成的剪切应力和破坏条件表现出更大的耐受性。这些发现强调了谨慎管理混合方式的重要性,特别是在试图重新激活高氨条件下经历快速丙酸积累的沼气系统中耐氨互营丙酸降解菌时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a276/12008871/90b3c67a6024/13068_2025_2644_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验