Suppr超能文献

一种基于配体诱导的锤头状核酶切割的荧光检测法的茶碱生物传感器。

A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage.

作者信息

Sekella Phillip T, Rueda David, Walter Nils G

机构信息

Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA.

出版信息

RNA. 2002 Oct;8(10):1242-52. doi: 10.1017/s1355838202028066.

Abstract

Recently, Breaker and coworkers engineered hammerhead ribozymes that rearrange from a catalytically inactive to an active conformation upon allosteric binding of a specific ligand. To monitor cleavage activity in real time, we have coupled a donor-acceptor fluorophore pair to the termini of the substrate RNA of such a hammerhead ribozyme, modified to cleave in trans in the presence of the bronchodilator theophylline. In the intact substrate, the fluorophores interact by fluorescence resonance energy transfer (FRET). The specific FRET signal breaks down as the effector ligand binds, the substrate is cleaved, and the products dissociate, with a rate constant dependent on the concentration of the ligand. Our biosensor cleaves substrate at 0.46 min(-1) in 1 mM theophylline and 0.04 min(-1) without effector, and discriminates against caffeine, a structural relative of theophylline. We have measured the theophylline-dependence profile of this biosensor, showing that concentrations as low as 1 microM can be distinguished from background. To probe the mechanism of allosteric regulation, a single nucleotide in the communication domain between the catalytic and ligand-binding domains was mutated to destabilize the inactive conformation of the ribozyme. As predicted, this mutant shows the same activity (0.3 min(-1)) in the presence and absence of theophylline. Additionally, time-resolved FRET measurements on the biosensor ribozyme in complex with a noncleavable substrate analog reveal no significant changes in fluorophore distance distribution upon binding of effector.

摘要

最近,布雷克及其同事设计了锤头状核酶,这种核酶在与特定配体发生变构结合后,会从催化无活性构象重排为活性构象。为了实时监测切割活性,我们将一对供体-受体荧光团连接到这种锤头状核酶底物RNA的末端,并进行了修饰,使其在支气管扩张剂茶碱存在的情况下进行反式切割。在完整的底物中,荧光团通过荧光共振能量转移(FRET)相互作用。随着效应物配体结合、底物被切割以及产物解离,特定的FRET信号会分解,其速率常数取决于配体的浓度。我们的生物传感器在1 mM茶碱中以0.46 min⁻¹的速度切割底物,在没有效应物的情况下切割速度为0.04 min⁻¹,并且能够区分与茶碱结构相关的咖啡因。我们测量了这种生物传感器对茶碱的依赖性曲线,结果表明低至1 μM的浓度也能与背景区分开来。为了探究变构调节的机制,催化结构域和配体结合结构域之间的通讯结构域中的一个单核苷酸发生了突变,以破坏核酶的无活性构象。正如预期的那样,这个突变体在有和没有茶碱的情况下表现出相同的活性(0.3 min⁻¹)。此外,对与不可切割底物类似物结合的生物传感器核酶进行时间分辨FRET测量发现,效应物结合后荧光团距离分布没有显著变化。

相似文献

2
Detection of small organic analytes by fluorescing molecular switches.
Bioorg Med Chem. 2001 Oct;9(10):2521-4. doi: 10.1016/s0968-0896(01)00027-x.
5
Computational design and biosensor applications of small molecule-sensing allosteric ribozymes.
Biomacromolecules. 2013 Apr 8;14(4):1240-9. doi: 10.1021/bm400299a. Epub 2013 Mar 11.
6
Fluorescent energy transfer readout of an aptazyme-based biosensor.
Methods Mol Biol. 2006;335:289-310. doi: 10.1385/1-59745-069-3:289.
7
Altering molecular recognition of RNA aptamers by allosteric selection.
J Mol Biol. 2000 May 12;298(4):623-32. doi: 10.1006/jmbi.2000.3704.
8
A Simple Colorimetric System for Detecting Target Antigens by a Three-Stage Signal Transformation-Amplification Strategy.
Biochemistry. 2018 Aug 28;57(34):5117-5126. doi: 10.1021/acs.biochem.8b00523. Epub 2018 Aug 13.
10
Ribozyme-mediated signal augmentation on a mass-sensitive biosensor.
J Am Chem Soc. 2006 Dec 20;128(50):15936-7. doi: 10.1021/ja064137m.

引用本文的文献

1
Effects of lipid membranes on RNA catalytic activity and stability.
Biol Cell. 2025 Feb;117(2):e202400115. doi: 10.1111/boc.202400115.
2
Digital Microfluidics Chips for the Execution and Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions.
ACS Omega. 2021 Aug 25;6(35):22514-22524. doi: 10.1021/acsomega.1c00239. eCollection 2021 Sep 7.
3
Guanidine Biosensors Enable Comparison of Cellular Turn-on Kinetics of Riboswitch-Based Biosensor and Reporter.
ACS Synth Biol. 2021 Mar 19;10(3):566-578. doi: 10.1021/acssynbio.0c00583. Epub 2021 Mar 1.
5
The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents.
Biophys Rev. 2016 Mar;8(1):11-23. doi: 10.1007/s12551-015-0188-0. Epub 2016 Jan 11.
7
Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Mar-Apr;4(2):139-52. doi: 10.1002/wnan.170. Epub 2011 Nov 30.
8
Aptamers for allosteric regulation.
Nat Chem Biol. 2011 Jul 18;7(8):519-27. doi: 10.1038/nchembio.609.
9
Application and analysis of structure-switching aptamers for small molecule quantification.
Anal Chim Acta. 2009 Apr 13;638(2):213-9. doi: 10.1016/j.aca.2009.02.018. Epub 2009 Feb 21.
10
Functional nucleic acid sensors.
Chem Rev. 2009 May;109(5):1948-98. doi: 10.1021/cr030183i.

本文引用的文献

1
Correlating structural dynamics and function in single ribozyme molecules.
Science. 2002 May 24;296(5572):1473-6. doi: 10.1126/science.1069013.
3
Demonstration of four immunoassay formats using the array biosensor.
Anal Chem. 2002 Mar 1;74(5):1061-8. doi: 10.1021/ac0157268.
5
Real-time PCR in virology.
Nucleic Acids Res. 2002 Mar 15;30(6):1292-305. doi: 10.1093/nar/30.6.1292.
6
Engineered allosteric ribozymes as biosensor components.
Curr Opin Biotechnol. 2002 Feb;13(1):31-9. doi: 10.1016/s0958-1669(02)00281-1.
7
Measuring proteins on microarrays.
Curr Opin Biotechnol. 2002 Feb;13(1):14-9. doi: 10.1016/s0958-1669(02)00278-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验