Suppr超能文献

Triton可促进脂筏混合物中结构域的形成。

Triton promotes domain formation in lipid raft mixtures.

作者信息

Heerklotz H

机构信息

Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.

出版信息

Biophys J. 2002 Nov;83(5):2693-701. doi: 10.1016/S0006-3495(02)75278-8.

Abstract

Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds.

摘要

生物膜被认为含有特定由鞘磷脂、胆固醇、糖脂和某些蛋白质组成的功能域(脂筏)。人们通常认为,在4摄氏度下应用去污剂曲拉通可将这些脂筏分离为抗去污剂膜组分。当前的研究旨在阐明曲拉通是否以及如何改变域的性质。为此,通过差示扫描量热法和压力扰动量热法在不同曲拉通浓度下监测1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱、卵鞘磷脂和胆固醇等摩尔混合物囊泡中随温度的转变。通过等温滴定量热法研究了向脂质混合物中添加曲拉通引发的转变,并通过(31)P-NMR研究了其结构。根据液相无序(ld)和有序(lo)双层以及胶束(mic)相讨论了结果,随着曲拉通含量增加或温度降低遇到的典型序列是ld、ld + lo、ld + lo + mic和lo + mic。这意味着添加曲拉通可能在均匀的流体膜中产生有序域,这些有序域在随后的膜溶解时又具有抗曲拉通性。因此,不应假定抗去污剂膜在大小、结构、组成甚至存在方面类似于生物脂筏。功能性脂筏可能不是稳定的现象;它们可能根据功能需求形成、生长、聚集或分解、收缩并消失,由膜无序或有序化合物活性的相当细微变化调节。

相似文献

1
Triton promotes domain formation in lipid raft mixtures.
Biophys J. 2002 Nov;83(5):2693-701. doi: 10.1016/S0006-3495(02)75278-8.
2
The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
J Mol Biol. 2003 Jun 13;329(4):793-9. doi: 10.1016/s0022-2836(03)00504-7.
3
Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
Biophys J. 2006 Feb 1;90(3):903-14. doi: 10.1529/biophysj.105.067710. Epub 2005 Nov 11.
7
Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization.
Langmuir. 2017 Jul 25;33(29):7312-7321. doi: 10.1021/acs.langmuir.7b01134. Epub 2017 May 11.
8
N-cholesteryl sphingomyelin-A synthetic sphingolipid with unique membrane properties.
Biochim Biophys Acta. 2011 Apr;1808(4):1054-62. doi: 10.1016/j.bbamem.2010.12.021. Epub 2010 Dec 29.

引用本文的文献

1
Polar Glycerolipids and Membrane Lipid Rafts.
Int J Mol Sci. 2024 Jul 30;25(15):8325. doi: 10.3390/ijms25158325.
2
After the gold rush: Getting far from the shallow in studying asymmetric membranes.
Biophys J. 2024 Aug 20;123(16):2355-2357. doi: 10.1016/j.bpj.2024.06.019. Epub 2024 Jun 19.
3
Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid.
Biophys J. 2024 Aug 20;123(16):2406-2421. doi: 10.1016/j.bpj.2024.05.031. Epub 2024 May 31.
4
EFR3A: a new raft domain organizing protein?
Cell Mol Biol Lett. 2023 Oct 25;28(1):86. doi: 10.1186/s11658-023-00497-y.
5
Critical Role of Molecular Packing in Lo Phase Membrane Solubilization.
Membranes (Basel). 2023 Jul 7;13(7):652. doi: 10.3390/membranes13070652.
6
Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling.
Int J Mol Sci. 2023 Jul 7;24(13):11226. doi: 10.3390/ijms241311226.
7
Biophysical studies of lipid nanodomains using different physical characterization techniques.
Biophys J. 2023 Mar 21;122(6):931-949. doi: 10.1016/j.bpj.2023.01.024. Epub 2023 Jan 25.
8
The plasma membrane as an adaptable fluid mosaic.
Biochim Biophys Acta Biomembr. 2023 Mar;1865(3):184114. doi: 10.1016/j.bbamem.2022.184114. Epub 2022 Dec 26.
10
Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane.
Anal Bioanal Chem. 2022 Aug;414(20):6055-6067. doi: 10.1007/s00216-022-04165-6. Epub 2022 Jun 14.

本文引用的文献

1
Phosphatidylcholine: cholesterol phase diagrams.
Biophys J. 1992 Oct;63(4):1176-81. doi: 10.1016/S0006-3495(92)81681-8.
3
Application of pressure perturbation calorimetry to lipid bilayers.
Biophys J. 2002 Mar;82(3):1445-52. doi: 10.1016/S0006-3495(02)75498-2.
4
From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers.
Biophys J. 2002 Mar;82(3):1429-44. doi: 10.1016/S0006-3495(02)75497-0.
6
Relaxation kinetics of lipid membranes and its relation to the heat capacity.
Biophys J. 2002 Jan;82(1 Pt 1):299-309. doi: 10.1016/S0006-3495(02)75395-2.
7
Relationship of lipid rafts to transient confinement zones detected by single particle tracking.
Biophys J. 2002 Jan;82(1 Pt 1):274-84. doi: 10.1016/S0006-3495(02)75393-9.
8
Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers.
Biophys J. 2001 Nov;81(5):2774-85. doi: 10.1016/S0006-3495(01)75920-6.
10
Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10642-7. doi: 10.1073/pnas.191168698. Epub 2001 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验