Ossipov Dimitri, Gohil Suresh, Chattopadhyaya Jyoti
Contribution from the Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, Sweden.
J Am Chem Soc. 2002 Nov 13;124(45):13416-33. doi: 10.1021/ja0269486.
We here report our studies on the conjugation of photoreactive Ru(2+) complex to oligonucleotides (ODNs), which give a stable duplex with the complementary target DNA strand. These functionalized DNA duplexes bearing photoreactive Ru(2+) complex can be specifically photolyzed to give the reactive aqua derivative, Ru(tpy)(dppz)(H(2)O)-ODN (tpy = 2,2':6',2' '-terpyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine), in situ, which successfully cross-links to give photoproduct(s) in the duplex form with the target complementary DNA strand. Thus, the stable precursor of the aquaruthenium complex, the monofunctional polypyridyl ruthenium complex Ru(tpy)(dppz)(CH(3)CN), has been site-specifically tethered to ODN, for the first time, by both solid-phase synthesis and postsynthetic modifications. (i) In the first approach, pure 3'-Ru(tpy)(dppz)(CH(3)CN)-ODN conjugate has been obtained in 42% overall yield (from the monomer blocks) by the automated solid-phase synthesis on a support labeled with Ru(tpy)(dppz)Cl complex with subsequent liberation of the crude conjugate from the support under mild conditions and displacement of the Cl(-) ligand by acetonitrile in the coordination sphere of the Ru(2+) label. (ii) In the second approach, the single-modified (3'- or 5'- or middle-modified) or 3',5'-bis-modified Ru(2+)-ODN conjugates were prepared in 28-50% yield by an amide bond formation between an active ester of the metal complex and the ODNs conjugated with an amino linker. The pure conjugates were characterized unambiguously by ultraviolet-visible (UV-vis) absorption spectroscopy, enzymatic digestion followed by HPLC quantitation, polyacrylamide gel electrophoresis (PAGE), and mass spectrometry (MALDI-TOF as well as by ESI). Ru(tpy)(dppz)(CH(3)CN)-ODNs form highly stabilized ODN.DNA duplexes compared to the unlabeled counterpart (DeltaT(m) varies from 8.4 to 23.6 degrees C) as a result of intercalation of the dppz moiety; they undergo clean and selective photodissociation of the CH(3)CN ligand to give the corresponding aqua complex, Ru(tpy)(dppz)(H(2)O)-ODNs (in the aqueous medium), which is evidenced from the change of their UV-vis absorption properties and the detection of the naked Ru(2+)-ODN ions generated in the course of the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis. Thus, when Ru(tpy)(dppz)(CH(3)CN)-ODN conjugate was hybridized to the complementary guanine (G)-rich target strand (T), and photolyzed in a buffer (pH 6.8), the corresponding aqua complex formed in situ immediately reacted with the G residue of the opposite strand, giving the cross-linked product. The highest yield (34%) of the photo cross-linked product obtained was with the ODN carrying two reactive Ru(2+) centers at both 3'- and 5'-ends. For ODNs carrying only one Ru(2+) complex, the yield of the cross-linked adduct in the corresponding duplex is found to decrease in the following order: 3'-Ru(2+)-ODN (22%) > 5'-Ru(2+)-ODN (9%) > middle-Ru(2+)-ODN (7%). It was also found that the photo cross-coupling efficiency of the tethered Ru(2+) complex with the target T strand decreased as the stabilization of the resulting duplex increased: 3'-Ru(2+)-ODN (VI.T) (DeltaT(m)(b) = 7 degrees C) < 5'-Ru(2+)-ODN (V.T) (DeltaT(m)(b) = 16 degrees C) < middle-Ru(2+)-ODN (VII.T) (DeltaT(m)(b) = 24.3 degrees C, Table 2). This shows that, with the rigidly packed structure, as in the duplex with middle-Ru(2+)-ODN, the metal center flexibility is considerably reduced, and consequently the accessibility of target G residue by the aquaruthunium moiety becomes severely restricted, which results in a poor yield in the cross-coupling reaction. The cross-linked product was characterized by PAGE, followed by MALDI-TOF MS.
我们在此报告了关于光反应性钌(II)配合物与寡核苷酸(ODN)共轭的研究,该共轭物与互补靶DNA链形成稳定的双链体。这些带有光反应性钌(II)配合物的功能化DNA双链体可被特异性光解,原位生成反应性水合衍生物[Ru(tpy)(dppz)(H₂O)]²⁺ - ODN(tpy = 2,2':6',2'' - 三联吡啶;dppz = 二吡啶并[3,2 - a:2',3' - c]吩嗪),其成功交联形成与靶互补DNA链呈双链形式的光产物。因此,首次通过固相合成和合成后修饰将水合钌配合物的稳定前体——单功能多吡啶钌配合物[Ru(tpy)(dppz)(CH₃CN)]²⁺位点特异性地连接到ODN上。(i)在第一种方法中,通过在标记有[Ru(tpy)(dppz)Cl]⁺配合物的载体上进行自动固相合成,随后在温和条件下从载体上释放粗共轭物,并在Ru(II)标记的配位球中用乙腈取代Cl⁻配体,以42%的总产率(基于单体单元)获得了纯的3'-[Ru(tpy)(dppz)(CH₃CN)]²⁺ - ODN共轭物。(ii)在第二种方法中,通过金属配合物的活性酯与用氨基连接子共轭的ODN之间形成酰胺键,以28 - 50%的产率制备了单修饰(3'-或5'-或中间修饰)或3',5'-双修饰的Ru(II)-ODN共轭物。通过紫外 - 可见(UV - vis)吸收光谱、酶切后HPLC定量、聚丙烯酰胺凝胶电泳(PAGE)和质谱(MALDI - TOF以及ESI)对纯共轭物进行了明确表征。由于dppz部分的嵌入,[Ru(tpy)(dppz)(CH₃CN)]²⁺ - ODNs与未标记的对应物相比形成了高度稳定的ODN·DNA双链体(ΔT(m)在8.4至23.6℃之间变化);它们经历CH₃CN配体的干净且选择性光解离,生成相应的水合配合物[Ru(tpy)(dppz)(H₂O)]²⁺ - ODNs(在水性介质中),这从它们的UV - vis吸收性质的变化以及在基质辅助激光解吸电离飞行时间(MALDI - TOF)质谱分析过程中产生的裸Ru(II)-ODN离子的检测得到证明。因此,当[Ru(tpy)(dppz)(CH₃CN)]²⁺ - ODN共轭物与富含鸟嘌呤(G)的互补靶链(T)杂交,并在缓冲液(pH 6.8)中光解时,原位形成的相应水合配合物立即与相反链的G残基反应,生成交联产物。获得的光交联产物的最高产率(34%)是在3'-和5'-末端都带有两个反应性Ru(II)中心的ODN上。对于仅携带一个Ru(II)配合物的ODN,相应双链体中交联加合物的产率按以下顺序降低:3'-Ru(II)-ODN(22%)> 5'-Ru(II)-ODN(9%)> 中间-Ru(II)-ODN(7%)。还发现,随着所得双链体稳定性的增加,连接的Ru(II)配合物与靶T链的光交叉偶联效率降低:3'-Ru(II)-ODN(VI.T)(ΔT(m)(b)=7℃)< 5'-Ru(II)-ODN(V.T)(ΔT(m)(b)=16℃)< 中间-Ru(II)-ODN(VII.T)(ΔT(m)(b)=24.3℃,表2)。这表明,在具有紧密堆积结构的情况下,如在与中间-Ru(II)-ODN形成的双链体中,金属中心的灵活性大大降低,因此水合钌部分对靶G残基的可及性受到严重限制,这导致交叉偶联反应的产率较低。通过PAGE对交联产物进行表征,随后进行MALDI - TOF MS分析。