Fiala André, Spall Thomas, Diegelmann Sören, Eisermann Beate, Sachse Silke, Devaud Jean-Marc, Buchner Erich, Galizia C Giovanni
Theodor-Boveri-Institut, Lehrstuhl für Genetik und Neurobiologie, Julius-Maximilians-Universität, Am Hubl, 97074 Würzburg, Germany.
Curr Biol. 2002 Oct 29;12(21):1877-84. doi: 10.1016/s0960-9822(02)01239-3.
Complex external stimuli such as odorants are believed to be internally represented in the brain by spatiotemporal activity patterns of extensive neuronal ensembles. These activity patterns can be recorded by optical imaging techniques. However, optical imaging with conventional fluorescence dyes usually does not allow for resolving the activity of biologically defined groups of neurons. Therefore, specifically targeting reporter molecules to neuron populations of common genetic identity is an important goal. We report the use of the genetically encoded calcium-sensitive fluorescence protein cameleon 2.1 in the Drosophila brain. We visualized odorant-evoked intracellular calcium concentration changes in selectively labeled olfactory projection neurons both postsynaptically in the antennal lobe, the primary olfactory neuropil, and presynaptically in the mushroom body calyx, a structure involved in olfactory learning and memory. As a technical achievement, we show that calcium imaging with a genetically encoded fluorescence probe is feasible in a brain in vivo. This will allow one to combine Drosophila's advanced genetic tools with the physiological analysis of brain function. Moreover, we report for the first time optical imaging recordings in synaptic regions of the Drosophila mushroom body calyx and antennal lobe. This provides an important step for the use of Drosophila as a model system in olfaction.
诸如气味分子等复杂的外部刺激被认为是通过广泛神经元集群的时空活动模式在大脑中进行内部表征的。这些活动模式可以通过光学成像技术进行记录。然而,使用传统荧光染料的光学成像通常无法分辨生物学定义的神经元群体的活动。因此,将报告分子特异性靶向具有共同遗传身份的神经元群体是一个重要目标。我们报告了在果蝇大脑中使用基因编码的钙敏感荧光蛋白cameleon 2.1的情况。我们在触角叶(初级嗅觉神经纤维网)的突触后以及蘑菇体花萼(参与嗅觉学习和记忆的结构)的突触前,可视化了选择性标记的嗅觉投射神经元中气味诱发的细胞内钙浓度变化。作为一项技术成果,我们表明使用基因编码荧光探针进行钙成像在活体大脑中是可行的。这将使人们能够将果蝇先进的遗传工具与大脑功能的生理分析相结合。此外,我们首次报告了在果蝇蘑菇体花萼和触角叶的突触区域进行的光学成像记录。这为将果蝇用作嗅觉模型系统迈出了重要一步。