Sayer M, Stratilatov A D, Reid J, Calderin L, Stott M J, Yin X, MacKenzie M, Smith T J N, Hendry J A, Langstaff S D
Department of Physics, Queen's University, Kingston, Ont., Canada K7L 3N6.
Biomaterials. 2003 Feb;24(3):369-82. doi: 10.1016/s0142-9612(02)00327-7.
Silicon stabilized tricalcium phosphate [Si-TCP] is formed within the calcium hydroxyapatite (HA)-tricalcium phosphate (TCP) system when a stoichiometric precipitate of hydroxyapatite is fired at 1,000 degrees in the presence of SiO(2). This paper proposes a composition range and crystallographic structure for Si-TCP. Reitveld XRD powder diffraction, transmission electron microscopy, infrared and proton nuclear magnetic resonance measurements show that crystalline Si-TCP is associated with the displacement of OH from an initial hydroxyapatite structure. The resulting calcium phosphate is modified by the incorporation of silicon into its structure with excess silica contributing to an amorphous component. Si-TCP has a monoclinic structure with a space group P2(1)/a akin to alpha-TCP with estimated lattice constants of a=12.863+/-0.004 A, b=9.119 +/-0.003 A, c=15.232+/-0.004 A, beta=126.3+/-0.1 degrees. It is proposed that Si(4+) substitutes for P(5+)in the TCP lattice with the average chemical composition of Si-TCP set primarily by the mechanisms available for charge compensation. While the formation of OH vacancies in HA initiates the transformation to Si-TCP, two mechanisms of charge compensation in the Si-TCP structure are plausible. If O(2-) vacancies provide charge compensation, the composition of Si-TCP is Ca(3)(P(0.9)Si(0.1)O(3.95))(2) derived for the addition of 0.33 mol SiO(2):mol HA. If excess Ca(2+) compensates, the composition is Ca(3.08)(P(0.92)Si(0.08)O(4))(2) derived for the addition of 0.25 mol SiO(2):mol HA. The reaction occurs most effectively when SiO(2) is added as a colloidal suspension rather than by the in-situ thermal decomposition of a silicon metallorganic compound. The material is a bioceramic of major biological interest because of its osteoconductivity and unique influence on skeletal tissue repair and remodeling.
当在二氧化硅存在的情况下,将化学计量比的羟基磷灰石沉淀物在1000摄氏度下煅烧时,在羟基磷灰石(HA)-磷酸三钙(TCP)体系中会形成硅稳定的磷酸三钙[Si-TCP]。本文提出了Si-TCP的组成范围和晶体结构。里特韦尔德X射线粉末衍射、透射电子显微镜、红外和质子核磁共振测量表明,结晶态的Si-TCP与初始羟基磷灰石结构中OH的位移有关。通过将硅掺入其结构中,所得的磷酸钙得到了改性,过量的二氧化硅导致了非晶态成分的产生。Si-TCP具有单斜结构,空间群为P2(1)/a,类似于α-TCP,估计晶格常数为a = 12.863±0.004 Å,b = 9.119±0.003 Å,c = 15.232±0.004 Å,β = 126.3±0.1度。有人提出,Si(4+)在TCP晶格中替代P(5+),Si-TCP的平均化学成分主要由可用的电荷补偿机制决定。虽然HA中OH空位的形成引发了向Si-TCP的转变,但Si-TCP结构中两种电荷补偿机制似乎是合理的。如果O(2-)空位提供电荷补偿,则Si-TCP的组成为Ca(3)(P(0.9)Si(0.1)O(3.95))(2),这是在添加0.33摩尔SiO(2):摩尔HA时得出的。如果过量的Ca(2+)进行补偿,则组成为Ca(3.08)(P(0.92)Si(0.08)O(4))(2),这是在添加0.25摩尔SiO(2):摩尔HA时得出的。当以胶体悬浮液形式添加SiO(2)而不是通过硅金属有机化合物的原位热分解时,该反应最有效。由于其骨传导性以及对骨骼组织修复和重塑的独特影响,该材料是一种具有重大生物学意义的生物陶瓷。