Suppr超能文献

气体交换器的结构、功能与进化:比较视角

Structure, function and evolution of the gas exchangers: comparative perspectives.

作者信息

Maina J N

机构信息

Department of Anatomical Sciences, The University of the Witwatersrand, Parktown, Johannesburg, South Africa.

出版信息

J Anat. 2002 Oct;201(4):281-304. doi: 10.1046/j.1469-7580.2002.00099.x.

Abstract

Over the evolutionary continuum, animals have faced similar fundamental challenges of acquiring molecular oxygen for aerobic metabolism. Under limitations and constraints imposed by factors such as phylogeny, behaviour, body size and environment, they have responded differently in founding optimal respiratory structures. A quintessence of the aphorism that 'necessity is the mother of invention', gas exchangers have been inaugurated through stiff cost-benefit analyses that have evoked transaction of trade-offs and compromises. Cogent structural-functional correlations occur in constructions of gas exchangers: within and between taxa, morphological complexity and respiratory efficiency increase with metabolic capacities and oxygen needs. Highly active, small endotherms have relatively better-refined gas exchangers compared with large, inactive ectotherms. Respiratory structures have developed from the plain cell membrane of the primeval prokaryotic unicells to complex multifunctional ones of the modern Metazoa. Regarding the respiratory medium used to extract oxygen from, animal life has had only two choices--water or air--within the biological range of temperature and pressure the only naturally occurring respirable fluids. In rarer cases, certain animals have adapted to using both media. Gills (evaginated gas exchangers) are the primordial respiratory organs: they are the archetypal water breathing organs. Lungs (invaginated gas exchangers) are the model air breathing organs. Bimodal (transitional) breathers occupy the water-air interface. Presentation and exposure of external (water/air) and internal (haemolymph/blood) respiratory media, features determined by geometric arrangement of the conduits, are important features for gas exchange efficiency: counter-current, cross-current, uniform pool and infinite pool designs have variably developed.

摘要

在进化的连续过程中,动物面临着获取分子氧以进行有氧代谢的类似基本挑战。在系统发育、行为、体型和环境等因素所施加的限制和约束下,它们在构建最佳呼吸结构方面做出了不同的反应。作为“需要是发明之母”这句格言的典范,气体交换器是通过严格的成本效益分析而开创的,这种分析引发了权衡和折中的权衡。在气体交换器的结构中存在着令人信服的结构 - 功能相关性:在分类群内部和之间,形态复杂性和呼吸效率随着代谢能力和氧气需求的增加而提高。与大型、不活跃的变温动物相比,高度活跃的小型恒温动物具有相对更精细的气体交换器。呼吸结构已从原始原核单细胞的简单细胞膜发展到现代后生动物的复杂多功能结构。关于用于提取氧气的呼吸介质,在生物温度和压力范围内,动物生命只有两种选择——水或空气——这是仅有的自然存在的可呼吸流体。在较罕见的情况下,某些动物已经适应使用两种介质。鳃(外翻式气体交换器)是原始的呼吸器官:它们是典型的水生呼吸器官。肺(内翻式气体交换器)是典型的空气呼吸器官。双峰(过渡型)呼吸者占据水 - 空气界面。外部(水/空气)和内部(血淋巴/血液)呼吸介质的呈现和暴露,由管道的几何排列决定,是影响气体交换效率的重要特征:逆流、错流、均匀池和无限池设计已经以不同方式发展。

相似文献

4
Models for a comparative functional analysis of gas exchange organs in vertebrates.脊椎动物气体交换器官比较功能分析模型。
J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1321-9. doi: 10.1152/jappl.1982.53.6.1321.

引用本文的文献

2
Structure and function of the avian respiratory system.鸟类呼吸系统的结构与功能。
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 27;380(1920):20230435. doi: 10.1098/rstb.2023.0435.

本文引用的文献

8
Breathing room for early animals.早期动物的喘息空间。
Nature. 1996 Jul 11;382(6587):111-2. doi: 10.1038/382111a0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验