Suppr超能文献

肠道内微生物通过潘氏细胞对肠道血管生成的发育调控

Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells.

作者信息

Stappenbeck Thaddeus S, Hooper Lora V, Gordon Jeffrey I

机构信息

Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15451-5. doi: 10.1073/pnas.202604299. Epub 2002 Nov 13.

Abstract

The adult mouse intestine contains an intricate vascular network. The factors that control development of this network are poorly understood. Quantitative three-dimensional imaging studies revealed that a plexus of branched interconnected vessels developed in small intestinal villi during the period of postnatal development that coincides with assembly of a complex society of indigenous gut microorganisms (microbiota). To investigate the impact of this environmental transition on vascular development, we compared the capillary networks of germ-free mice with those of ex-germ-free animals colonized during or after completion of postnatal gut development. Adult germ-free mice had arrested capillary network formation. The developmental program can be restarted and completed within 10 days after colonization with a complete microbiota harvested from conventionally raised mice, or with Bacteroides thetaiotaomicron, a prominent inhabitant of the normal mouse/human gut. Paneth cells in the intestinal epithelium secrete antibacterial peptides that affect luminal microbial ecology. Comparisons of germ-free and B. thetaiotaomicron-colonized transgenic mice lacking Paneth cells established that microbial regulation of angiogenesis depends on this lineage. These findings reveal a previously unappreciated mechanism of postnatal animal development, where microbes colonizing a mucosal surface are assigned responsibility for regulating elaboration of the underlying microvasculature by signaling through a bacteria-sensing epithelial cell.

摘要

成年小鼠肠道含有复杂的血管网络。人们对控制该网络发育的因素了解甚少。定量三维成像研究表明,在出生后发育阶段,小肠绒毛中会形成一个由分支相互连接的血管组成的丛,这一阶段与肠道内复杂的本土微生物群落(微生物群)的组装相吻合。为了研究这种环境转变对血管发育的影响,我们比较了无菌小鼠与在出生后肠道发育期间或完成后定殖的无菌后动物的毛细血管网络。成年无菌小鼠的毛细血管网络形成停滞。用从常规饲养小鼠中收集的完整微生物群或用正常小鼠/人类肠道中的主要居民嗜热栖热放线菌定殖后,发育程序可在10天内重新启动并完成。肠道上皮中的潘氏细胞分泌影响管腔微生物生态的抗菌肽。对无菌和缺乏潘氏细胞的嗜热栖热放线菌定殖转基因小鼠的比较表明,微生物对血管生成的调节取决于这一细胞系。这些发现揭示了一种以前未被认识的出生后动物发育机制,即定殖于粘膜表面的微生物通过细菌感应上皮细胞发出信号,负责调节其下微脉管系统的精细发育。

相似文献

1
Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15451-5. doi: 10.1073/pnas.202604299. Epub 2002 Nov 13.
2
Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa.
Semin Immunol. 2007 Apr;19(2):70-83. doi: 10.1016/j.smim.2007.04.002. Epub 2007 May 7.
3
Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice.
J Biol Chem. 1997 Sep 19;272(38):23729-40. doi: 10.1074/jbc.272.38.23729.
4
The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells.
Gut Microbes. 2019;10(1):45-58. doi: 10.1080/19490976.2018.1474321. Epub 2018 Jul 11.
5
Activation of Paneth cell alpha-defensins in mouse small intestine.
J Biol Chem. 2002 Feb 15;277(7):5219-28. doi: 10.1074/jbc.M109410200. Epub 2001 Dec 3.
7
Expression and Localization of Paneth Cells and Their α-Defensins in the Small Intestine of Adult Mouse.
Front Immunol. 2020 Oct 13;11:570296. doi: 10.3389/fimmu.2020.570296. eCollection 2020.
8
Paneth cells promote angiogenesis and regulate portal hypertension in response to microbial signals.
J Hepatol. 2020 Sep;73(3):628-639. doi: 10.1016/j.jhep.2020.03.019. Epub 2020 Mar 20.
9
Paneth cell alpha-defensins: peptide mediators of innate immunity in the small intestine.
Springer Semin Immunopathol. 2005 Sep;27(2):133-46. doi: 10.1007/s00281-005-0202-x. Epub 2005 Jun 2.
10
A model of host-microbial interactions in an open mammalian ecosystem.
Science. 1996 Sep 6;273(5280):1380-3. doi: 10.1126/science.273.5280.1380.

引用本文的文献

1
Neonatal microbiome dysbiosis decoded by mNGS: from mechanistic insights to precision interventions.
Front Cell Infect Microbiol. 2025 Aug 18;15:1642072. doi: 10.3389/fcimb.2025.1642072. eCollection 2025.
3
HDAC3 regulates the diurnal rhythms of claudin expression and intestinal permeability.
Front Epigenet Epigenom. 2024;2. doi: 10.3389/freae.2024.1496999. Epub 2024 Nov 27.
4
Effects of the gut microbiota on placental angiogenesis and intrauterine growth in gnotobiotic mice.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2426341122. doi: 10.1073/pnas.2426341122. Epub 2025 Jul 25.
5
Interaction between the breast tumor microenvironment and gut microbiome.
Gut Microbes. 2025 Dec;17(1):2514136. doi: 10.1080/19490976.2025.2514136. Epub 2025 Jun 8.
6
Impact of gut microbiota on colorectal anastomotic healing (Review).
Mol Clin Oncol. 2025 Apr 14;22(6):52. doi: 10.3892/mco.2025.2847. eCollection 2025 Jun.
7
Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation.
Front Immunol. 2025 Mar 3;16:1547365. doi: 10.3389/fimmu.2025.1547365. eCollection 2025.
8
Malic enzyme 3 mediated the effects of malic acid on intestinal redox status and feed efficiency in broilers.
J Anim Sci Biotechnol. 2025 Feb 24;16(1):28. doi: 10.1186/s40104-025-01163-3.
9
The Role of the Gut Microbiota in Health, Diet, and Disease with a Focus on Obesity.
Foods. 2025 Feb 4;14(3):492. doi: 10.3390/foods14030492.
10
Characterization and comparison of gut microbiota in patients with acute pancreatitis by metagenomics and culturomics.
Heliyon. 2025 Jan 25;11(3):e42243. doi: 10.1016/j.heliyon.2025.e42243. eCollection 2025 Feb 15.

本文引用的文献

1
How host-microbial interactions shape the nutrient environment of the mammalian intestine.
Annu Rev Nutr. 2002;22:283-307. doi: 10.1146/annurev.nutr.22.011602.092259. Epub 2002 Apr 4.
3
Unseen forces: the influence of bacteria on animal development.
Dev Biol. 2002 Feb 1;242(1):1-14. doi: 10.1006/dbio.2001.0522.
4
New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes.
J Bacteriol. 2001 Dec;183(24):7198-205. doi: 10.1128/JB.183.24.7198-7205.2001.
5
A molecular view of the intestinal ecosystem.
Curr Issues Intest Microbiol. 2000 Mar;1(1):1-12.
7
Commensal host-bacterial relationships in the gut.
Science. 2001 May 11;292(5519):1115-8. doi: 10.1126/science.1058709.
8
Ecological developmental biology: developmental biology meets the real world.
Dev Biol. 2001 May 1;233(1):1-12. doi: 10.1006/dbio.2001.0210.
10
Molecular analysis of commensal host-microbial relationships in the intestine.
Science. 2001 Feb 2;291(5505):881-4. doi: 10.1126/science.291.5505.881.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验