Tomasiewicz Henry G, Flaherty Denise B, Soria J P, Wood John G
NIEHS Marine and Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee Great Lakes WATER Institute, Milwaukee, Wisconsin, USA.
J Neurosci Res. 2002 Dec 15;70(6):734-45. doi: 10.1002/jnr.10451.
In Alzheimer's disease (AD), the microtubule-associated protein, tau, is compromised in its normal association with microtubules and forms into paired helical filaments (PHF) that are the hallmark cytoskeletal pathology of the disease. Several posttranslational modifications of tau including phosphorylation have been implicated in AD pathogenesis. In addition, and importantly, mutations in the genes encoding human tau have recently been implicated in a variety of hereditary dementias, collectively termed frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). This has rekindled interest in the importance of tau in neurodegenerative diseases (cf. Vogel [1998] Science 280:1524-1525; Goedert et al. [1998] Neuron 21:955-958; D'Souza et al. [1999] PNAS 96:5598-5603). Despite significant progress in the field of tau biology and neurodegenerative diseases, several important issues remain unresolved. The early functional consequences of tau alterations in living neurons is incompletely understood, and it is not clear how tau in neurodegenerative diseases becomes redistributed from its normal concentration in neuronal axons to pathological inclusions in neuronal soma known as neurofibrillary tangles (NFT). One of the reasons for these gaps in knowledge is the relative paucity of model systems to study these processes. We have developed a transgenic model system to study the functional consequences and trafficking patterns in zebrafish neurons of human tau either mutated on sites associated with hereditary dementias or altered at select posttranslational modification sites. The overall guiding hypothesis is that the model allows dissection of a hierarchy of events relevant to potential mechanisms of neurodegenerative diseases related to critical early stages in development of disease. We showed that a FTDP-17 mutant form of human tau expressed in zebrafish neurons produced a cytoskeletal disruption that closely resembled the NFT in human disease. This model system will prove useful in the study of other mutant taus in vertebrate neurons in vivo, and the approaches developed here will have broad usefulness in the study of functional consequences and potential genetic analyses of introducing into living vertebrate neurons other molecules involved in the pathogenesis of neurodegenerative diseases.
在阿尔茨海默病(AD)中,微管相关蛋白tau与微管的正常结合受到损害,并形成双螺旋丝(PHF),这是该疾病标志性的细胞骨架病理特征。tau蛋白的几种翻译后修饰,包括磷酸化,都与AD的发病机制有关。此外,重要的是,编码人类tau蛋白的基因突变最近与多种遗传性痴呆症有关,这些痴呆症统称为与17号染色体相关的额颞叶痴呆伴帕金森综合征(FTDP-17)。这重新引发了人们对tau蛋白在神经退行性疾病中的重要性的兴趣(参见Vogel [1998]《科学》280:1524 - 1525;Goedert等人[1998]《神经元》21:955 - 958;D'Souza等人[1999]《美国国家科学院院刊》96:5598 - 5603)。尽管在tau生物学和神经退行性疾病领域取得了重大进展,但仍有几个重要问题尚未解决。tau蛋白改变在活神经元中的早期功能后果尚未完全了解,并且尚不清楚神经退行性疾病中的tau蛋白如何从其在神经元轴突中的正常浓度重新分布到神经元胞体中称为神经原纤维缠结(NFT)的病理包涵体中。知识存在这些空白的原因之一是用于研究这些过程的模型系统相对较少。我们开发了一种转基因模型系统,以研究人类tau蛋白在与遗传性痴呆相关的位点发生突变或在特定翻译后修饰位点发生改变时,斑马鱼神经元中的功能后果和运输模式。总体指导假设是,该模型允许剖析与神经退行性疾病潜在机制相关的一系列事件,这些事件与疾病发展的关键早期阶段有关。我们发现,在斑马鱼神经元中表达的FTDP-17突变形式的人类tau蛋白会导致细胞骨架破坏,这与人类疾病中的NFT非常相似。该模型系统将被证明对体内脊椎动物神经元中其他突变tau蛋白的研究有用,并且这里开发的方法在研究引入活脊椎动物神经元中其他参与神经退行性疾病发病机制的分子的功能后果和潜在遗传分析方面将具有广泛的用途。